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Abstract——Until recently, the signaling events elic-
ited in vascular smooth muscle cells by angiotensin II
(Ang II) were considered to be rapid, short-lived, and
divided into separate linear pathways, where intracel-
lular targets of the phospholipase C-diacylglycerol-Ca21

axis were distinct from those of the tyrosine kinase- and
mitogen-activated protein kinase- dependent pathways.
However, these major intracellular signaling cascades
do not function independently and are actively engaged
in cross-talk. Downstream signals from the Ang II-bound
receptors converge to elicit complex and multiple re-

sponses. The exact adapter proteins or “go-between”
molecules that link the multiple intracellular pathways
await clarification. Ang II induces a multitude of actions
in various tissues, and the signaling events following
occupancy and activation of angiotensin receptors are
tightly controlled and extremely complex. Alterations of
these highly regulated signaling pathways in vascular
smooth cells may be pivotal in structural and functional
abnormalities that underlie vascular pathological pro-
cesses in cardiovascular diseases such as hypertension,
atherosclerosis, and post-interventional restenosis.

I. Introduction

The vascular wall is an active, pliable and integrated
organ made up of cellular (endothelial cells, vascular
smooth muscle cells, and fibroblasts) and noncellular
(extracellular matrix) components. It is not a static or-
gan; the components dynamically change shape, in-
crease, decrease, or reorganize, in response to physiolog-
ical and pathological stimuli (Dubey, 1997). In the intact
arterial media, smooth muscle cells and matrix are re-
sponsible for structural and functional characteristics
of the vessel wall, including contraction-relaxation,
growth, development, remodeling, and repair, and for

the pathogenesis of cardiovascular disease, such as ath-
erosclerosis, restenosis and hypertension (Mulvany and
Aalkjaer, 1990; Schiffrin, 1992; Katoh and Periasamy,
1996; Bornfeldt, 1996). Many local and systemic factors
regulate vascular smooth muscle cell function, including
vasoactive peptides, such as Ang2 II and endothelin-1
(ET-1), that stimulate vasoconstriction and growth and
vasorelaxing factors, such as nitric oxide, prostacyclin,
and C-type natriuretic peptide that induce vasodilation
by increasing levels of cyclic nucleotides (Rubanyi, 1991;
Lüscher, 1993; Lüscher and Barton, 1997; Stein and
Levin, 1998).

Ang II is a multifunctional peptide that has numerous
actions on vascular smooth muscle—it modulates vaso-

2 Abbreviations: Ang, angiotensin; ET-1, endothelin-1; PDGF,
platelet-derived growth factor; RAS, renin-angiotensin system; ACE,
angiotensin-converting enzyme; NEP, neutral endopeptidase; GRK, G
protein receptor kinase; SH2, Src homology 2; EGF, epidermal growth
factor; FAK, focal adhesion kinase; PLC, phospholipase C; PLA2, phos-
pholipase A2; PLD, phospholipase D; MAPK, mitogen-activated protein
kinase; PKC, protein kinase C; DAG, diacylglycerol; PtdInsP2, phospha-
tidylinositol-4,5-bisphosphate; PYK, proline-rich tyrosine kinase; PKD,
protein kinase D; ERK, extracellular signal-regulated kinase; STAT,
signal transducers and activators of transcription; PI3K, phosphatidyl-
inositol 3-kinase; CADTK, calcium-dependent tyrosine kinase; JNK,

c-Jun N-terminal kinase; PKB, protein kinase B; SAPK, stress-acti-
vated protein kinase; MKP, MAP kinase phosphatase; PHAS-I, phos-
phorylated heat- and acid-stable protein; eIF, eukaryotic initiation factor;
PKA, protein kinase A; PG, prostaglandin; TXA, thromboxane; HPETE,
hydroperoxyeicosatetraenoic acid; HETE, hydroxyeicosatetraenoic acid;
CRE, cAMP/calcium response element; SRE, seum response element; SIE,
sis-inducing factor element ; TGF-b, transforming growth factor-b; IGF-1,
insulin-like growth factor-1; bFGF, basic fibroblast growth factor; PAF,
platelet-activating factor; TNF-a, tumor necrosis factor-a; MCP-1, mono-
cyte chemoattractant protein-1; SHR, spontaneously hypertensive rats;
WKY, Wistar-Kyoto; MEK, MAPK/ERK kinase.
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motor tone, it regulates cell growth and apoptosis, it
influences cell migration and extracellular matrix dep-
osition, it is proinflammatory, and it stimulates produc-
tion of other growth factors [e.g., platelet-derived growth
factor (PDGF)] and vasoconstrictors (e.g., ET-1). Accord-
ingly, Ang II plays a fundamental role in controlling the
functional and structural integrity of the arterial wall
and may be important in physiological processes regu-
lating blood pressure and in pathological mechanisms
underlying vascular diseases. The multiple actions of
Ang II are mediated via specific, highly complex intra-
cellular signaling pathways that are stimulated follow-
ing an initial binding of the peptide to its cell-surface
receptors (Matsusaka and Ichikawa, 1997). The term
“intracellular signaling pathway” includes the intercon-
nected molecular cascades that transmit information
from the cell membrane receptor to the intracellular
proteins that regulate cell activities such as contraction,
cell growth, mitogenesis, apoptosis, differentiation, mi-
gration, and other specialized functions. Identification of
such signal transduction processes is essential for un-
derstanding mechanisms that regulate vascular smooth
muscle cell function, both physiologically and patho-
physiologically. This review focuses on Ang II-mediated
signaling in vascular smooth muscle cells and implica-
tions of altered Ang II-induced signal transduction in
vascular pathological processes, concentrating specifi-
cally on hypertension. The molecular and cellular mech-
anisms of Ang II in cardiac and renal diseases have

recently been reviewed and will not be discussed in
detail here (Kim and Iwao, 2000).

II. Physiological Actions of Angiotensin II in
Vascular Smooth Muscle Cells

A. The Renin Angiotensin System—Production of
Angiotensin II

Ang II, an octapeptide hormone, is the active compo-
nent of the renin-angiotensin system (RAS). It regulates
blood pressure, plasma volume via aldosterone-regu-
lated sodium excretion, sympathetic nervous activity,
and thirst responses. It also plays a fundamental role in
pathological adaptation, as manifested in myocardial
remodeling after myocardial infarction and in vascular
remodeling in hypertension. Ang II is produced system-
ically via the classical or renal RAS, and locally via
tissue RAS. In the classical RAS, circulating renal-de-
rived renin cleaves hepatic-derived angiotensinogen at
the N terminus to form the decapeptide, angiotensin I,
which is converted by the dipeptidyl carboxypeptidase,
angiotensin-converting enzyme (ACE), in the lungs, to
the active Ang II (Skeggs et al., 1967; Dorer et al., 1972;
Phillips et al., 1993; Inagami, 1998) (Fig. 1). Ang I can
also be processed into the heptapeptide Ang-(1-7) by
three tissue endopeptidases, neutral endopeptidase
(NEP) 24.11, NEP 24.15, and NEP 24.26 (Ferrario et al.,
1997). Ang II is degraded by aminopeptidases to Ang III
and Ang IV (Fig. 1).

FIG. 1. Scheme of the classical renin-angiotensin system. Circulating renal-derived renin cleaves hepatic-derived angiotensinogen to form the
decapeptide angiotensin I (Ang I). Ang I is converted by ACE in the lungs and tissue to active angiotensin II (Ang II), which is further metabolized
to angiotensin III, angiotensin IV, and Ang II (1-7). Several non-ACEs, such as chymase, carboxypeptidase and cathepsin G, may also cleave Ang I
to Ang II.
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The RAS was originally regarded as a circulating sys-
tem. However, many of its components are localized in
tissues indicating the existence of a local tissue RAS as
well (Dzau, 1989; Danser, 1996). ACE exists in plasma
(as the circulating hormone), in the interstitium and
intracellularly. Tissue ACE is present in all major or-
gans, heart, brain, blood vessels, adrenals, kidney, liver,
and reproductive organs (Hollenberg, 1998), and is al-
ready functional in utero (Schutz et al., 1996; Esther et
al., 1997). Tissue ACE activity seems to peak during the
phase of major organ development and declines thereaf-
ter (Esther et al., 1997). All components of the RAS,
except renin, have been demonstrated to be produced in
the vasculature. ACE is found in high concentrations in
the adventitia, as well as in cultured vascular smooth
muscle and endothelial cells (Dzau, 1989; Ekker et al.,
1989; Naftilan, 1994). Angiotensinogen mRNA and pro-
tein have been detected in vascular smooth muscle, en-
dothelium, and perivascular fat (Naftilan et al., 1991;
Naftilan, 1994; Morgan et al., 1996). Since vascular re-
nin is absent, local generation of Ang II in the intersti-
tium is regulated by tissue ACE that is probably depen-
dent on circulating renin (Fig. 2). Although the function
of tissue ACE is currently unclear, it may contribute to
regulation of regional blood flow as recently demon-
strated in the human forearm where in situ generated
Ang II is more important for vasoconstriction than cir-
culating Ang II (Saris et al., 2000).

In addition to ACE-dependent pathways of Ang II
formation, non-ACE pathways, which could be particu-
larly important in pathological states, have been dem-

onstrated. Chymotrypsin-like serine protease (chymase)
may represent an important pathway for conversion of
Ang I to Ang II in the human heart (Urata et al., 1990,
1996) and kidney (Hollenberg, 1998). Functional chy-
mase and a non-ACE pathway have also been demon-
strated in human vascular tissue (Hollenberg et al.,
1998; Takai et al., 1998) and in dog carotid artery
(Shiota et al., 1999).

B. Angiotensin Receptors

In mammalian cells, Ang II mediates its effects via at
least two high-affinity plasma membrane receptors, AT1

and AT2. Both receptor subtypes have been cloned and
pharmacologically characterized (Murphy et al., 1991;
Sasaki et al., 1991; Kambayashi et al., 1993; Mukoyama
et al., 1993). Two other Ang receptors have been de-
scribed, AT3 and AT4 subtypes. The AT3 receptor sub-
type, initially described in the neuro 2A neuroblastoma
cell line (Chaki and Inagami, 1992) is peptide-specific
recognizing mainly Ang II. This subtype does not bind
nonpeptide ligands such as losartan (selective AT1 re-
ceptor antagonist) or PD123319 (selective AT2 receptor
antagonist), and has only been observed in cell lines. The
AT4 receptor, which is distributed in heart, lung, kidney,
brain, and liver, binds Ang IV (Swanson et al., 1992) but
not losartan or PD123319. Since the pharmacology of
AT3 and AT4 receptors has not been fully characterized,
these receptors are not yet included in a definitive clas-
sification of mammalian AT receptors as defined by the
International Union of Pharmacology Nomenclature

FIG. 2. Scheme of the tissue renin-angiotensin system. Angiotensinogen, ACE, and angiotensin receptors have been demonstrated in endothelial
and vascular smooth muscle cells, as well as in perivascular fat. Tissue-derived angiotensinogen is converted to Ang I by renal-derived renin that is
adsorbed from the circulation. Ang I is cleaved to Ang II by tissue ACE. endoth, endothelium; other abbreviations as in Fig. 1.
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Subcommittee for Angiotensin Receptors (de Gasparo,
1995).

The AT1 receptor belongs to the seven membrane-
spanning G protein-coupled receptor family and typi-
cally activates phospholipase C through the heterotri-
meric Gq protein (de Gasparo et al., 1995; Inagami,
1995) (Table 1). Human AT1 receptor gene is mapped to
chromosome 3. To date, AT1 receptors have been shown
to mediate most of the physiological actions of Ang II,
and this subtype is predominant in the control of Ang
II-induced vascular functions (Sadoshima, 1998). In the
vasculature, AT1 receptors are present at high levels in
smooth muscle cells and relatively low levels in the
adventitia and are undetectable in the endothelium
(Zhuo et al., 1998; Allen et al., 2000). Two AT1 receptor
subtypes have been described in rodents, AT1A and
AT1B, with greater than 95% amino acid sequence iden-
tity (Iwai and Inagami, 1992). AT1A and AT1B receptor
genes in rats are mapped to chromosome 17 and 2,
respectively. Based on the cDNA sequence, the AT1 re-
ceptor is composed of 359 amino acids (Sandberg, 1994).
It is a glycoprotein and contains extracellular glycosyl-
ation sites at the amino terminus (Asn4) and the second
extracellular loop (Asp176 and Asn188) (Desarnaud et al.,
1993). The transmembrane domain at the amino-termi-
nal extension and segments in the first and third extra-
cellular loops are responsible for G protein interactions
with the receptor (Hjorth et al., 1994). Internalization of
G protein-coupled receptors involves receptor phosphor-
ylation, which may be mediated, in part via caveola
(Berk and Corson, 1997; Ishizaka et al., 1998). Although
G protein-coupled receptors do not contain intrinsic ki-
nase activity, they are phosphorylated on serine and
threonine residues by members of the G protein receptor
kinase (GRK) family. AT1 receptors are phosphorylated
both in the basal state and in response to Ang II stim-
ulation (Kai et al., 1994). Threonine and serine residues
between Thr332 and Ser338 of the cytoplasmic tail are
essential for receptor internalization (Hunyady et al.,

1994). The AT1 receptor is also phosphorylated at ty-
rosine residues. Potential tyrosine phosphorylation sites
within the AT1 receptor include amino acids 302, 312,
319, and 339 within the carboxyl terminus (Berk and
Corson, 1997). Tyrosine at position 319 is important as it
is part of the motif Tyr-Ile-Pro-Pro, which is analogous
to a Src homology 2 (SH2) binding motif in the PDGF
receptor (Tyr-Ile-Pro) and in the epidermal growth fac-
tor (EGF) receptor (Tyr-Leu-Pro-Pro) (Fantl et al., 1993).
In EGF and PDGF receptors, these motifs are target
sequences for tyrosine phosphorylation. Various ty-
rosine kinases, including Janus kinases (JAK and TYK),
Src family kinases, and focal adhesion kinase (FAK) can
tyrosine phosphorylate AT1 receptors.

The second major isoform of the Ang receptor, AT2, is
normally expressed at high levels in fetal tissues and
decreases rapidly after birth (Nahmias and Strosberg,
1995). The AT2 receptor gene is localized as a single copy
on the X chromosome. In adults, AT2 receptor expression
is detectable in the pancreas, heart, kidney, adrenals,
brain, and vasculature (Viswanathan and Saavedra,
1994; Touyz et al., 1999a). In the vasculature, AT2 re-
ceptors predominate in the adventitia and are detectable
in the media (Zhuo et al., 1998). AT2 receptors are also
expressed in several cell lines, including PC12W, R3T3,
and N1E115 (Inagami, 1995). The AT2 receptor is a
seven transmembrane-type, G protein-coupled receptor,
comprising 363 amino acids. It has low amino acid se-
quence homology (;32%) with AT1A or AT1B receptors
(Mukoyama et al., 1993). Although the exact signaling
pathways and the functional roles of AT2 receptors are
unclear, these receptors, which appear to be regulated
by intracellular cations, particularly Na1 (Tamura et
al., 1999), may antagonize, under physiological condi-
tions, AT1-mediated effects (Ciuffo et al., 1998; Yamada
et al., 1998) by inhibiting cell growth, and by inducing
apoptosis and vasodilation (Hayashida et al., 1996; Ho-
riuchi, 1997a,b; Gallinat et al., 2000; Unger, 1999; Sir-

TABLE 1
Characteristics of AT1 and AT2 angiotensin receptor subtypes

Angiotensin Receptors

AT1 AT2

Gene at1 at2
Chromosome Chromosome 3 Chromosome X
Structure Seven transmembrane spanning 359 amino acids

(rat, human)
Seven transmembrane spanning 363 amino

acids (rat, human)
Amino acid site for Ang II binding N-terminal extension extracellular loop 1,

extracellular loop 3
Molecular mass ;50 kDa ;44 kDa
Potency order Ang II . Ang III Ang II 5 Ang III
Agonists None known CGP42112A (high concentrations)
Antagonists Losartan, irbesartan, valsartan, candesartan,

tasosartan, telmisartan, eprosartan
PD123319, PD123177

Effector Gq/11 G protein
Signal transduction mediators PLC, Ca21 channels, tyrosine kinases, MAP

kinases, PLD, PLA2

cGMP, phosphatases

Location Mainly in VSMC, lung, liver, brain, kidney Mainly in fetal tissues, brain, reproductive
tissues

VSMC, vascular smooth muscle cells.
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agy, 2000). The exact role of AT2 receptors in cardiovas-
cular disease remains to be defined.

C. Vascular Actions of Angiotensin II

Ang II promotes its effects by acting directly through
Ang II receptors present on vascular cells, indirectly
through the release of other factors, and possibly via
cross-talk with intracellular signaling pathways of other
vasoactive agents and growth factors. Although the
principal function of smooth muscle cells is vasoconstric-
tion, it has become evident that vascular smooth muscle
cells have important synthetic properties during devel-
opment and vascular remodeling (Table 2) and are the
major source of extracellular matrix components of the
vascular media (Katoh and Periasamy, 1996). During
blood vessel development, immature smooth muscle
cells are in a dynamic state of growth and differentiation
characterized by proliferation and migration (Glukhova
et al., 1991). In the adult vessel, they become quiescent
and assume a fibroblast-like appearance, and become
filled with contractile fibers (Gordon et al., 1990). Al-
though mature smooth muscle cells remain quiescent
until injury or insult occurs, they undergo physiological
hypertrophy in response to increased load (Bucher et al.,
1982; Katoh and Periasamy, 1996). Ang II plays a role in
these developmental processes, acting via AT1 and AT2
receptors, which are differentially expressed in vascular
smooth muscle cells during normal development and
during pathological processes. In vascular disease,
smooth muscle cells undergo hyperplasia and/or hyper-
trophy as an adaptive or reactive response (Table 2).
(Geisterfer et al., 1988; Berk et al., 1989; Paquet et al.,
1990; Stouffer and Owens, 1992; Dubey, 1997; Touyz
and Schiffrin, 1997a; Touyz et al., 1999b) and may be
critical in vascular remodeling associated with hyper-
tension, atherosclerosis, or neointimal formation. Both
Ang II receptor subtypes appear to be necessary for a
complete vascular smooth muscle cell response to injury
(Zahradka et al., 1998).

Integrated vascular responses to Ang II are the result
of combined AT1- and AT2-mediated actions, as well as
effects of bioactive end products of the RAS, such as
Ang-(1-7). Whereas Ang II induces vasoconstriction,

growth, migration, production of extracellular matrix
components, and inflammation via AT1 receptors, it pro-
motes apoptosis, and inhibits proliferation and hyper-
trophy via AT2 receptors (Allen et al., 2000; Siragy,
2000). Ang-(1-7) has been described as a naturally oc-
curring competitive inhibitor of Ang II, as it has potent
vasodepressor and antihypertensive effects. It can stim-
ulate release of vasopressin, act as an excitatory neuro-
transmitter, augment synthesis and release of vasodila-
tor prostaglandins, potentiate the actions of bradykinin
and release nitric oxide (Ferrario et al., 1997). In addi-
tion, ACE inhibitors augment circulating levels of the
vasodilator peptide, which may contribute to the anti-
hypertensive effects associated with ACE inhibitors
(Chappel et al., 1998; Iyer et al., 1998). The receptor
mediating the vascular actions of Ang-(1-7) has been
tentatively characterized as a non-AT1/AT2 subtype
(Ferrario et al., 1997). Although the exact role of this
peptide in the physiological and pathophysiological reg-
ulation of vascular function awaits clarification, its po-
tential to antagonize AT1-mediated actions suggests
that Ang-(1-7) could modulate vascular tone by promot-
ing vasodilation.

D. Angiotensin II-Dependent Signaling Pathways

Ang II elicits complex highly regulated cascades of
intracellular signal transduction that lead to short-term
vascular effects, such as contraction, and to long-term
biological effects, such as cell growth, migration, extra-
cellular matrix deposition, and inflammation. Ligand-
receptor binding on the external cell membrane surface
induces the interaction between the receptor and effec-
tor protein on the internal cell membrane surface via G
proteins (heterotrimeric proteins comprised of a, b and g
subunits). Intracellular signaling via the AT2 receptor
subtype will not be discussed in detail here, as progress
in Ang II type 2 receptor research in the cardiovascular
system has recently been reviewed (Csikos et al., 1998;
Horiuchi et al., 1999; Unger, 1999). Unless otherwise
indicated, signaling events described in the present re-
view are mediated via AT1 receptors. AT1 receptors are
coupled to multiple, distinct signal transduction pro-
cesses, leading to diverse biological actions. The signal-
ing processes are multiphasic with distinct temporal
characteristics (Fig. 3). Immediate, early, and late sig-
naling events occur within seconds, minutes, and hours,
respectively (Fig. 3). Ang II-induced phospholipase C
(PLC) phosphorylation and Src activation occur within
seconds and constitute immediate signaling events, ac-
tivation of phospholipase A2 (PLA2), phospholipase D
(PLD), tyrosine kinases and mitogen-activated protein
kinases (MAPKs) occurs within minutes and are early
signaling processes, whereas generation of oxidative
stress, proto-oncogene expression, and protein synthe-
sis, which occur within hours, make up late signaling
events.

TABLE 2
Physiological and pathophysiological effects of angiotensin II on the

vasculature

Physiological Response Pathophysiological Response

● Contraction ● 1 contraction 3 1 peripheral
resistance 3 BP

● Cell growth ● 1 growth 3 1 media width 3
vascular remodeling 3 1 BP

● Apoptosis ● 2 apoptosis 3 1 growth 3 vascular
remodeling 3 1 BP

● Production of collagen,
fibronectin, etc.

● 1 extracellular matrix deposition 3
vascular remodeling 3 1 BP

● Inflammatory response ● Atherosclerosis
● Cell migration ● Vascular remodeling

● Atherosclerosis

1, increase; 2, decrease; BP, blood pressure.
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E. Immediate Signaling Events Stimulated by
Angiotensin II

Ang II-elicited vascular contraction is rapid and uti-
lizes various signaling mechanisms that occur within
seconds of Ang II binding to its receptor. These immedi-
ate signal transduction processes include: a) G protein-
mediated activation of PLC, leading to phosphatidylino-
sitol hydrolysis and formation of inositol trisphosphate
(IP3) and diacylglycerol accumulation (DAG); b) increase
in cytosolic free calcium concentration ([Ca21]i) by in-
creasing Ca21 influx and mobilizing intracellular Ca21;
c) activation of protein kinase C (PKC); d) changes in
intracellular pH (alkalinization) via stimulation of the
Na1/H1 exchanger; e) changes in intracellular free con-
centrations of Na1 ([Na1]i) and Mg21 ([Mg21]i); and f)
activation of the Src family of kinases (Fig. 4).

1. Stimulation of Phospholipase C and Phosphatidyl-
inositol Hydrolysis. One of the earliest detectable
events resulting from Ang II stimulation of vascular
smooth muscle cells is a rapid, PLC-dependent hydroly-
sis of phosphatidylinositol-4,5-bisphosphate (PtdInsP2)
to yield water soluble IP3 and membrane bound DAG
(Alexander, 1985; Griendling et al., 1985; Berk et al.,
1987a; Griendling et al., 1989). PLC is a family of at

least three related genes: PLC-b, PLC-g, and PLC-d
(Rhee and Choi, 1992). PLC-b isoforms are regulated by
a and bg subunits of G proteins (Smrcka et al., 1991),
whereas PLC-g isoforms are regulated by tyrosine phos-
phorylation (Rhee, 1991; Homma et al., 1993; Marrero et
al., 1995b). PLC-d regulation is unclear, but may involve
intracellular Ca21. PLC-b1, PLC-g1, and PLC-d1 have
been identified in vascular smooth muscle cells (Marrero
et al., 1994; Ushio-Fukai et al., 1998b). The AT1 receptor
sequentially couples to PLC-b1 via a heterotrimeric G
protein and to PLC-g1 via a tyrosine kinase (Ushio-
Fukai et al., 1998b; Venema et al., 1998). The initial AT1
receptor-PLC-b1 coupling is mediated by Gaq/11bg and
Ga12bg. The bg dimer acts as a signal transducer for
activation of PLC (Touhara et al., 1995; Ushio-Fukai et
al., 1998b). Both PLC-b1 and PLC-g isoforms play a role
in IP3 formation. PLC-b1 appears to be important in the
rapid generation of IP3 (within 15 s), whereas PLC-g
seems to play a role in the later phase of IP3 formation
(Ushio-Fukai et al., 1998b). Ang II-stimulated IP3 gen-
eration may also be mediated, in part, via tyrosine ki-
nase-dependent pathways (Goutsouliak and Rabkin,
1997). Ang II induces a dose-dependent increase in phos-

FIG. 3. Diagram demonstrating the multiphasic nature of Ang II-
mediated signaling events in vascular smooth muscle cells. Binding of
Ang II to the AT1 receptor (AT1 rec) stimulates activation of PLC and Src
within seconds and constitutes the immediate signaling events. Activa-
tion of PLA2, PLD, tyrosine kinases, and MAP kinases occurs within
minutes and are the early signaling processes. Generation of reactive
oxygen species, proto-oncogene expression, and protein synthesis occurs
within hours and makes up the late signaling events.

FIG. 4. Immediate signaling events induced by Ang II stimulation in
vascular smooth muscle cells. Angiotensin receptor (AT1) binding leads to
G protein-coupled activation of PLC, resulting in phosphatidylinositol
hydrolysis and formation of IP3 and DAG accumulation. IP3 mobilizes
Ca21 from sarcoplasmic reticular stores, and DAG activates PKC, which
in turn activates the Na1/H1 exchanger. These events result in increased
intracellular free Ca21 concentration ([Ca21]i) and intracellular alkalin-
ization. Ang II also activates the Na1-dependent Mg21 exchanger that
induces Mg21 efflux and Na1 influx leading to increased intracellular free
Na1 concentration ([Na1]i) and decreased intracellular free Mg21 concen-
tration ([Mg21]i). These signaling events stimulate actin-myosin interac-
tion resulting in vascular smooth muscle cell contraction. Src family
kinases, which are also activated by Ang II within seconds, are major
upstream regulators of signaling pathways associated with cell growth.
Src-dependent pathways may also modulate [Ca21]i a possible pathway
that has not yet been fully elucidated (dashed line).
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phatidylinositol turnover resulting in rapid transient
IP3 formation (Griendling et al., 1989) and biphasic and
sustained DAG generation (Alexander et al., 1985;
Griendling et al., 1985). Losartan, the selective AT1
receptor blocker, inhibits Ang II-induced hydrolysis of
PtdInsP2, indicating that Ang II stimulation of the PLC
pathway is mediated exclusively via AT1 receptors. IP3
stimulates release of Ca21 from sarcoplasmic/endoplas-
mic reticular stores and DAG, with cofactors phosphati-
dylserine and Ca21, activates PKC. Ang II-elicited IP3
signal slightly precedes a rapid increase in cytoplasmic
free calcium concentration ([Ca21]i), which is in large
part independent of calcium influx. These events corre-
late temporally with initiation of contraction in isolated
vascular smooth muscle cells, as well as in intact small
resistance arteries, and most likely constitute the early
signaling pathway for initiation of the calcium-depen-
dent, calmodulin-activated phosphorylation of the myo-
sin light chain, which leads to cellular contraction (Las-
segue et al., 1993; Walsh et al., 1995; Savineau and
Marthan, 1997; Touyz and Schiffrin, 1997a; Touyz et al.,
1999c). DAG can also be formed by the PLD-mediated
hydrolysis of other phospholipids such as phosphatidyl-
choline and phosphatidylethanolamine.

2. Increased Intracellular Free Calcium Concentra-
tion. Ang II-stimulated Ca21 signaling is complex and
occurs via multiple pathways to elicit an integrated
Ca21 signal. Ang II typically mediates a biphasic [Ca21]i
response comprising a rapid initial transient phase and
a sustained plateau phase (Dostal, 1990; Touyz et al.,
1994; Assender et al., 1997; Touyz and Schiffrin, 1997b).
Both AT1A and AT1B receptors have been shown to
mediate calcium signaling in rodent vascular smooth
muscle cells (Zhu et al., 1998b). The first [Ca21]i tran-
sient is generated primarily by IP3-induced mobilization
of intracellular Ca21 and to a lesser extent by Ca21-
induced Ca21 release (Touyz and Schiffrin, 1997b). The
second [Ca21]i phase, which appears to contribute to the
sustained Ang II-induced vasoconstriction, is dependent
on external Ca21 and is the result of transmembrane
Ca21 influx (Rembold, 1992; Ruan and Arendshorst,
1996a; Inscho et al., 1997; Iverson and Arendshorst,
1998; Touyz et al., 1999c). Exact mechanisms whereby
Ang II stimulates Ca21 influx are unclear but may in-
volve voltage-dependent calcium channels, which are
directly or indirectly activated by Ang II, Ca21-perme-
able, nonspecific dihydropyridine-insensitive cation
channels, receptor-gated Ca21 channels, Ca21-activated
Ca21 release channels, and activation of the Na1/Ca21

exchanger (Arnaudeau et al., 1996; Lu et al., 1996). In
addition to IP3-mediated mobilization of intracellular
Ca21 and influx of extracellular Ca21, tyrosine kinase-
dependent increases in [Ca21]i have been demonstrated
in vascular smooth muscle cells (Hughes and Bolton,
1995; Touyz and Schiffrin, 1996a; Di Salvo et al., 1998).

3. Activation of Protein Kinase C. Ang II-induced
DAG production, together with Ca21 and phosphatidyl-

serine, activate PKC, a serine/threonine kinase that is a
member of a multigene family consisting of at least 11
isoenzymes (Hug and Sarre, 1993; Newton, 1997). Ang II
stimulates the translocation of cytosolic PKC to the
plasma membrane where the activated enzyme phos-
phorylates specific proteins associated with vascular
function (Walsh et al., 1996; Damron et al., 1998). PKC
is implicated in Ang II-induced vascular contraction as
well as in vascular smooth muscle cell growth (Rasmus-
sen et al., 1987; Ruan and Arendshorst, 1996b; Orjii and
Keiser, 1997; Kiron and Loutzenhiser, 1998; Bauer,
1999). These effects are mediated via activation of the
Na1/H1 exchanger leading to intracellular alkaliniza-
tion, an important modulator of actin-myosin interac-
tion, and of contraction (Aalkjaer and Peng, 1997). In
addition, Ang II-stimulated PKC induces its actions
through phosphorylation of tyrosine kinases, such as
proline-rich tyrosine kinase (PYK2) (Sabri et al., 1998),
p130Cas (Sayeski et al., 1998), and Src family tyrosine
kinases (Zou et al., 1998), and by stimulating MAP ki-
nase signaling pathways (Zou et al., 1996; Wilkie et al.,
1997; Kudoh, 1997; Li et al., 1998a). The PKC isoform
that activates ERK-1 and ERK-2 (extracellular signal-
regulated kinases) in vascular smooth muscle cells has
been identified as PKC-z (Liao et al., 1997). Some stud-
ies failed to demonstrate that Ang II effects are PKC-
dependent and others reported only a partial depen-
dence on PKC (Berk et al., 1987b, 1989; Assender et al.,
1997). Thus both PKC-dependent and -independent
mechanisms are involved in Ang II-stimulated vascular
contraction and growth. In addition to its second mes-
senger function, PKC has been implicated in the rapid-
agonist-induced desensitization of AT1 receptors (Balm-
forth et al., 1997).

Some of the PKC-induced actions are mediated via the
recently characterized protein kinase D (PKD), a serine/
threonine kinase that is rapidly and potently activated
by Ang II (Abedi et al., 1998). PKD could be an impor-
tant mediator for the biological function(s) of one or
more PKC isoforms in vascular smooth muscle cells,
and/or may represent a component of a novel Ang II-
stimulated PKC-independent signaling pathway.

4. Stimulation of Na1/H1 Exchange. Ang II elicits a
biphasic change in intracellular pH (pHi), comprising an
initial acidification followed by a sustained alkaliniza-
tion (Griendling et al., 1989; Touyz and Schiffrin, 1997a;
Touyz et al., 1999d). The rapid acidification is associated
with Ca21-ATPase-regulated Ca21 mobilization (Berk et
al., 1987b). Ang II-stimulated alkalinization is entirely
dependent on activation of the Na1/H1 exchanger (Berk
et al., 1987b; Touyz and Schiffrin, 1997a; Touyz et al.,
1999d), which is modulated by PKC-dependent and
PKC-independent mechanisms (Berk et al., 1987b).
MAPKs also play a role in Ang II-stimulated activation
of the Na1/H1 exchanger. ERK-1/ERK-2 and p38 acti-
vate the Na1/H1 exchanger in vascular smooth muscle
cells (Kusuhara, 1998; Touyz et al., 1999d) and p90rsk
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has been identified as a putative potent Na1/H1 kinase
(Takahashi et al., 1997a). Activation of the Na1/H1 ex-
changer and akalinization induce vasoconstriction in
various vascular beds by increasing [Na1]i and [Ca21]i
and by sensitizing the contractile machinery to Ca21

(Grinstein et al., 1989; Carr et al., 1995; Ye, 1996; Tepel
et al., 1998b; Touyz et al., 1999). In addition, increased
intracellular pHi is a potent stimulus for DNA synthesis
(Sachinidis et al., 1996). Thus alkalinization is an im-
portant mechanism whereby Ang II modulates vascular
smooth muscle function by stimulating both contraction
and growth.

5. Angiotensin II Increases Intracellular Free Concen-
trations of Na1 and Decreases Intracellular Free Con-
centrations of Mg21. In addition to increasing [Ca21]i
and pHi, Ang II raises [Na1]i and reduces [Mg21]i in a
concentration-dependent fashion in vascular smooth
muscle cells (Johnson et al., 1991; Ye et al., 1996; Touyz
and Schiffrin, 1999). These effects are rapid and maxi-
mal responses occur within 40 to 60 s (Touyz and Schif-
frin, 1998). [Na1]i is regulated by the Na1/H1 ex-
changer, the Na1/Ca21 exchanger, the Na1/K1 ATPase
pump, and Na1 channels (Shigekawa et al., 1996; Ju-
haszova and Blaustein, 1997; Cox et al., 1998). The
cellular mechanisms regulating [Mg21]i are unknown,
but we and others have shown that a putative Na1/Mg21

exchanger regulates [Mg21]i by inducing Mg21 efflux
and by stimulating Na1 influx (Touyz and Schiffrin,
1996b; Touyz and Schiffrin, 1999a; Murphy, 2000). Ang
II-stimulated increase in [Na1]i and reduction in
[Mg21]i influence vascular smooth muscle contraction
directly or indirectly by modulating [Ca21]i.

6. Activation of Src Family Kinases. The Src family
of protein tyrosine kinases that characteristically inter-
act with transmembrane tyrosine kinase receptors, also
interact functionally with G protein-coupled receptors,
such as AT1 (Paxton et al., 1994; Marrero et al., 1995b;
Parsons and Parsons, 1997; Thomas and Brugge, 1997;
Ishida et al., 1998). To date, at least 14 Src-related
kinases have been identified, of which the 60-kDa c-Src
is the best characterized (Thomas and Brugge, 1997).
The Src family kinases are subdivided into three groups
based on their pattern of expression. Src, Fyn, and Yes
are expressed ubiquitously, Blk, Fgr, Hck, Lck, and Lyn
are found primarily in hematopoietic cells and Frk-re-
lated kinases (Frk/Rak and Iyk/Bsk) are expressed pre-
dominantly in epithelial-derived cells (Thomas and
Brugge, 1997). Src family kinases share a high degree of
structural similarity, with common domain architecture
and regulatory mechanisms. They consist of one or more
amino-terminal acylation sites (required for membrane
localization), a unique domain (which defines the indi-
vidual members), an SH3 domain, an SH2 domain, a
catalytic domain, and a carboxyl-terminal noncatalytic
domain. Regulation of Src activity is complex. Phosphor-
ylation of Tyr527 by Csk inhibits Src activity, whereas
dephosphorylation of this residue activates Src. Activa-

tion may also occur by autophosphorylation of Tyr419 in
the catalytic domain, by displacement of the intramolec-
ular interactions of the SH2 or SH3 domains by high-
affinity ligands or modification of certain residues (Erpel
and Courtneidge, 1995). Src family kinases are activated
in response to various stimuli in many cell types and
have been suggested to play an important role in signal
transduction pathways that control growth and cellular
architecture.

Ang II rapidly phosphorylates c-Src with maximal
activation occurring within 60 s measured by either
autophosphorylation or kinase activity toward enolase
(Ishida et al., 1995, 1998; Marrero et al., 1995b; Touyz et
al., 1999e). Src plays an important role in Ang II-in-
duced phosphorylation of PLC-g and IP3 formation. We
reported that Ang II-stimulated [Ca21]i responses in
human vascular smooth muscle cells are mediated, in
part, via Src-dependent mechanisms (Touyz et al.,
1999e). Src, intracellular Ca21, and PKC regulate Ang
II-induced phosphorylation of p130Cas, a signaling mol-
ecule involved in integrin-mediated cell adhesion
(Sayeski et al., 1998). Src has also been associated with
Ang II-induced activation of PYK2 (Dikic et al., 1996;
Sabri et al., 1998) and with phosphorylation of ERKs
(Ishida et al., 1998), as well as activation of other down-
stream proteins including pp120, p125Fak, paxillin,
Jak2, signal transducers and activators of transcription
(STAT)-1, Ga, caveolin, and the adapter protein, Shc (Li
et al., 1996b).

F. Early Signaling Events Mediated by Angiotensin II

In addition to rapid signaling events associated with
contraction, the AT1 receptor couples to multiple intra-
cellular transduction pathways that are linked to long-
term regulation of vascular smooth muscle cell function,
such as growth, migration, deposition of extracellular
matrix, and production of growth factors. These pro-
cesses are initiated by signaling pathways that are stim-
ulated by Ang II within minutes and include: a) phos-
phorylation of tyrosine kinases; b) activation of MAPKs;
c) activation of PLA2 and arachidonic acid metabolism;
d) activation of PLD; and e) modulation of cyclic nucle-
otides (Fig. 5).

1. Activation of Tyrosine Kinases. Ang II stimulates
phosphorylation of a tyrosine residue of many vascular
smooth muscle cell proteins. These include the AT1 re-
ceptor itself, PLC-g1 and Src family kinases (activated
within seconds), as well as JAK and TYK, FAK, Pyk2,
p130Cas (a Crk-associated substrate), and phosphatidyl-
inositol 3-kinase (PI3K), all of which are activated
within minutes (Fig. 6). The role of tyrosine kinases in
Ang II-mediated signal transduction pathways in car-
diovascular cells was extensively reviewed in 1997 (Mar-
rero et al., 1995a; Berk et al., 1997; Berk and Corson,
1997; Dostal et al., 1997; Griendling et al., 1997). Only
recent developments relating to Ang II signaling and
tyrosine kinases will be discussed in detail here.
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a. Janus family kinases. Similar to classical cytokine
receptors, the AT1 receptor stimulates tyrosine phos-
phorylation of the Janus family kinases (Jak1, Jak2,
Jak3, and Tyk2) (Ihle, 1995; Dostal et al., 1997). In
vascular smooth muscle cells, Ang II binding to the AT1
receptor induces the physical association and activation
of Jak2. Jak2 must be catalytically active to form a
complex with the AT1 receptor, and this process appears
to be regulated by an Ang II-mediated autophosphory-
lation event (Ali et al., 1998). JAK proteins are key
mediators of mRNA expression and are characterized as
“early growth response genes”. JAK phosphorylates
STAT proteins that are translocated to the nucleus,
where they activate gene transcription (Horvath and
Darnell, 1997) (Fig. 6). In cardiovascular cells, Jak2 and
Tyk2 are phosphorylated within 5 min of Ang II stimu-
lation (Marrero et al., 1995a; Dostal et al., 1997). STAT1
and STAT2 phosphorylation in response to Ang II is
maximal by ;15 min, while STAT5 is activated within
30 to 60 min, and STAT3 phosphorylation is only detect-

able after ;60 min (Marrero et al., 1995a; Kodama et al.,
1998; McWhinney et al., 1998). Electroporation of anti-
bodies against STAT1 and STAT3 abolished vascular
smooth muscle cell proliferative responses to Ang II but
not to other growth factors, implicating an essential role
of STAT proteins in Ang II-induced cell proliferation
(Marrero et al., 1997). The JAK-STAT signaling path-
way activates early growth response genes and may be a
mechanism whereby Ang II influences vascular and car-
diac growth, remodeling, and repair (Berk and Corson,
1997; Hefti et al., 1997).

b. Focal adhesion kinase and proline-rich tyrosine ki-
nase 2. Ang II promotes cell migration and induces
changes in cell shape and volume by activating FAK-
dependent signaling pathways (Howe et al., 1998). Sim-
ilar to integrin receptors, the AT1 receptor also activates
FAK (Leduc and Meloche, 1995). Focal adhesion com-
plexes, specialized sites of cell adhesion, act as supramo-
lecular structures for the assembly of signal transduc-
tion mediators. The best characterized tyrosine kinase
localized to focal adhesion complexes is a 125-kDa pro-
tein, FAK (Guan, 1997). FAK is autophosphorylated at
Tyr397 in resting substrate-attached cells, and it pos-
sesses sites favored for phosphorylation by Src (Calalb et
al., 1995). FAK associates with paxillin and talin, and
both FAK and paxillin can bind to the cytoplasmic tail of
integrins independently (Chen et al., 1995a; Leduc and
Meloche, 1995) (Fig. 6). FAK is abundant in developing
blood vessels, and elevation of its phosphotyrosine con-
tent in vascular smooth muscle cells is a rapid response
to Ang II (Polte et al., 1994; Okuda et al., 1995). Ang
II-induced activation of FAK causes its translocation to
sites of focal adhesion with the extracellular matrix and
phosphorylation of paxillin and talin, which may be in-
volved in the regulation of cell morphology and move-
ment. The link between the AT1 receptor and FAK is
unknown, but the Rho family of GTPases are potential
candidates (Rozengurt, 1995; Aspenstrom, 1999).

A novel p125FAK protein, calcium-dependent tyrosine
kinase (CADTK), has recently been detected in rat aortic
smooth muscle cells. CADTK is the rat homolog of Pyk2
(Yu et al., 1996). This nonreceptor tyrosine kinase is
rapidly tyrosine-phosphorylated by Ang II, and appears
to be associated with the cytoskeleton (Brinson et al.,
1998). CADTK is localized to and activated by an actin
cytoskeleton-dependent mechanism that is regulated in
a Ca21 and PKC-dependent manner, independently of
FAK (Brinson et al., 1998). CADTK and FAK exhibit
different modes of activation. Activation of CADTK is
highly correlated with the stimulation of c-Jun N-termi-
nal kinase (JNK) activity, rather than with ERK activ-
ity, as is the case for FAK (Yu et al., 1996).

Another FAK family member, Pyk2 (Lev et al., 1995),
also called cell adhesion kinase-b (Sasaki et al., 1995),
related adhesion focal tyrosine kinase (Avraham et al.,
1995) and CADTK (Yu et al., 1996; Guan, 1997), is
activated by G protein-coupled receptors, including the

FIG. 5. Early signaling events mediated by Ang II in vascular smooth
muscle cells. Ang II phosphorylates multiple tyrosine kinases (TK) such
as Janus family kinases (JAK/TYK), focal adhesion kinases (FAK and
Pyk2), p130Cas and phosphatidylinositol 3-kinase (PI3K), within minutes
of stimulation. Activated tyrosine kinases phosphorylate many down-
stream targets including the mitogen-activated protein kinase cascade
(detailed in Figs. 7 and 8). Src associates with the adapter protein
complex, Shc-GRB2-Sos that induces guanine nucleotide exchange on the
small G protein Ras-GDP/GTP. Activated Ras-GTP interacts with Raf
(MAPK kinase kinase) resulting in phosphorylation of two serine resi-
dues present in MEK (MAPK/ERK kinase) which, in turn, phosphory-
lates MAPKs, including ERK1/2, JNK/SAPK, and p38. Ang II also acti-
vates PLD, a major source of DAG, and phospholipase A2, which induces
arachidonic acid production. PLD- and PLA2-dependent signaling path-
ways may also activate MAPKs. Ptd, phosphatidylcholine; PtdOH, phos-
phatidic acid.
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AT1 receptor, as well as by PKC stimulation and increased
intracellular Ca21 (Marasawa, 1998b; Murasawa et al.,
1998b; Eguchi et al., 1999a). The AT1 receptor uses Ca21-
dependent PYK2 to activate c-Src, required for Pyk2-me-
diated ERK activation (Eguchi et al., 1999a). Since Pyk2 is
a candidate to both regulate c-Src and to link G protein-
coupled vasoconstrictor receptors with protein tyrosine ki-
nase-mediated contractile, migratory, and growth re-
sponses, it may be a potential point of convergence
between Ca21-dependent signaling pathways and protein
tyrosine kinase pathways in vascular smooth muscle cells
(Dikic et al., 1996). In endothelial cells the balance of Pyk2
tyrosine phosphorylation in response to Ang II is controlled
by Yes kinase and by a tyrosine phosphatase SHP-2 (Tang
et al., 2000).

c. p130Cas. p130Cas is an Ang II-activated tyrosine
kinase that plays a role in cytoskeletal rearrangement.
This protein serves as an adapter molecule because it
contains proline-rich domains, an SH3 domain, and
binding motifs for the SH2 domains of Crk and Src (Fig.
6). p130Cas is important for integrin-mediated cell adhe-
sion, by recruitment of cytoskeletal signaling molecules
such as FAK, paxillin, and tensin to the focal adhesions

(Rozengurt, 1995; Carey et al., 1998). In cultured vascu-
lar smooth muscle cells, Ang II induces a transient in-
crease in p130Cas tyrosine phosphorylation, that peaks
at ;20 min after the addition of Ang II (Sayeski et al.,
1998). Some investigators have found this phosphoryla-
tion to be dependent on Ca21, c-Src, and PKC, and that
it requires an intact cytoskeletal network (Sayeski et al.,
1998). Other studies reported that Ang II-induced acti-
vation of p130Cas is Ca21- and PKC-independent (Taka-
hashi et al., 1998). Although the exact functional signif-
icance of Ang II-induced activation of p130Cas is unclear,
it might regulate a-actin expression, cellular prolifera-
tion, migration, and cell adhesion (Nojima et al., 1995;
Carey, 1998; Nakamura et al., 1998). p130Cas has re-
cently been demonstrated to play a critical role in car-
diovascular development and actin filament assembly.
Mice lacking p130Cas died in utero showing marked ve-
nous congestion and growth retardation (Honda et al.,
1998). Histologically, the heart was poorly developed
and blood vessels were prominently dilated (Honda et
al., 1998). Thus, p130Cas plays an essential role in arte-
rial and cardiac development, and accordingly in remod-
eling in cardiovascular disease.

FIG. 6. Tyrosine kinase pathways stimulated by Ang II in vascular smooth muscle cells. Ang II rapidly activates Src, which regulates PLC-g- and
ERK-dependent signaling pathways. Ang II binding to the AT1 receptor induces the physical association and activation of JAK2/TYK2 (Janus kinases)
as indicated by dashed line. JAK2/TYK2 phosphorylates STAT proteins that are translocated to the nucleus where they activate gene transcription.
Ang II also activates FAK, which possesses sites favored for phosphorylation by Src. FAK associates with paxillin and talin that associate with actin.
The link between AT1 receptor and FAK is unknown, but the Rho family of GTPases are potential candidates. Pyk2 and CADTK are activated by Ang
II through Ca21-dependent pathways. Activated Pyk2 regulates Src and ERK-dependent signaling cascades. p130cas is transiently activated by Ang
II, possibly via a Ca21-dependent pathway. Phosphorylated p130cas may be important in the regulation of a-actin expression. PI3K activation by Ang
II leads to Akt/PKB activation, which in turn stimulates cell survival pathways and activation of p70S6K. p70S6K, p70 S6-kinase.
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d. Phosphatidylinositol 3-kinase. PI3Ks, a large fam-
ily of intracellular signal transducers that phosphory-
late inositol lipids at the 39 position of the inositol ring to
generate the 3-phosphoinositides PI(3)P, PI(3,4)P2 and
PI(3,4,5)P3, are heterodimeric proteins composed of 85-
and 110-kDa subunits (Leevers et al., 1999). These ki-
nases influence cell survival, metabolism, cytoskeletal
reorganization, and membrane trafficking and have re-
cently been identified to play an important role in the
regulation of vascular smooth muscle cell growth
(Saward and Zahradka, 1997; Leevers et al., 1999).
PI3K, characteristically associated with tyrosine kinase
receptors, is also activated by AT1 receptors (Saward
and Zahradka, 1997). In vascular smooth muscle cells,
Ang II stimulates activity, phosphorylation, and migra-
tion of PI3K, and induces translocation of the p85 sub-
unit from the perinuclear area to foci throughout the
cytoplasm and the cytoskeletal apparatus (Saward and
Zahradka, 1997). The action of Ang II peaks at 15 min
and returns to control levels by 30 min. PI3K inhibition
by wortmannin and LY294002 completely blocks Ang
II-stimulated hyperplasia in cultured rat cells, suggest-
ing the important regulatory role of this nonreceptor
tyrosine kinase in vascular smooth muscle cell growth
(Saward and Zahradaka, 1997). Several molecular tar-
gets for PI3K have been identified, including centaurin,
the actin-binding protein profilin, phosphoinositide-de-
pendent kinases, the atypical PKCs, PLCg, Rac1, and
JNK and the protein Ser/Thr kinase Akt/protein kinase
B (PKB) (Wymann and Pirola, 1998). Akt/PKB has re-
cently been identified as an important PI3K down-
stream target in Ang II-activated vascular smooth mus-

cle cells (Takahashi et al., 1999). It regulates protein
synthesis by activating p70 S6-kinase (p70S6K) (Eguchi
et al., 1999b), and it modulates Ang II-mediated Ca21

responses in aortic cells by stimulating Ca21 channel
currents (Seki et al., 1999). Akt/PKB has also been im-
plicated to protect vascular smooth muscle cells from
apoptosis and to promote cell survival by influencing
Bcl-2 and c-Myc expression and by inhibiting caspases
(Coffer et al., 1998). Mechanisms whereby the AT1 re-
ceptor mediates activation of PI3K-dependent Akt/PKB
are unclear, but redox-sensitive pathways and c-Src may
be important (Thomas, 1997; Ushio-Fukai et al., 1999b).
Although the exact role of PI3K in Ang II signaling in
vascular smooth muscle cells has not yet been estab-
lished, it is possible that this complex pathway may
control the balance between mitogenesis and apoptosis,
a fundamental process in the regulation of vascular
structure in health and disease.

2. Mitogen-Activated Protein Kinase Pathways. MAP
kinases constitute a superfamily of serine/threonine pro-
tein kinases involved in the regulation of a number of
intracellular pathways. Mammalian MAPKs are
grouped into six major subfamilies: a) ERK-1/ERK-2; b)
JNK/stress-activated protein kinases (SAPK); c) p38; d)
ERK-6, p38-like MAPK; e) ERK-3; and f) ERK-5 (also
called Big MAP kinase 1) (Robinson and Cobb, 1997)
(Fig. 7). MAP kinase-dependent signaling pathways
have been associated with cellular growth and apopto-
sis, with cellular differentiation and transformation and
with vascular contraction (Mii et al., 1996; Force and
Bonventre, 1998; Touyz et al., 1999b,c). The ERKs are
activated in response to growth and differentiation fac-

FIG. 7. Schematic diagram of the currently known mammalian MAP kinase signaling pathways. Individual components are discussed in the text.
The question marks denote the signaling components that remain to be elucidated. PAK, p21-activated protein kinase; TAK, TGF-b-activated kinase;
TAO, thousand and one amino acid kinase; BMK, big MAP kinase
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tors, whereas JNKs and p38 are usually activated in
response to inflammatory cytokines and cellular stress
(Robinson and Cobb, 1997; Force and Bonventre, 1998;
Morinville et al., 1998; New and Han, 1998; Ip and
Davis, 1998). Ang II activates the three major members
of the MAP kinase family, ERKs, JNKs, and p38 (Leduc
and Meloche, 1995; Kudoh et al., 1997; Touyz et al.,
1999d). MAP kinase pathways comprise a three-compo-
nent protein kinase cascade consisting of a serine/thre-
onine protein kinase (MAPKKK), which phosphorylates
and activates a dual-specificity protein kinase
(MAPKK), which in turn phosphorylates and activates
another protein kinase (MAPK) (Cobb and Goldsmith,
1995; Robinson and Cobb, 1997). In the Ras/Raf/MEK/
ERK pathway, Raf corresponds to MAPKKK, MEK cor-
responds to MAPKK, and ERK corresponds to MAPK
(Fig. 7).

a. Upstream events. Activation of ERKs requires
dual phosphorylation on threonine and tyrosine residues
found within the motif Thr-Glu-Tyr, that is mediated by
MEK (Fig. 8). MEK in turn is regulated by serine (and
probably tyrosine) phosphorylation by the kinase
c-Raf-1, although Raf-independent pathways for ERK
activation have also been demonstrated (Chao et al.,
1994; Force and Bonventre, 1998). Raf is regulated by
phosphorylation of Raf-1 kinase, as well as by recruit-
ment to the plasma membrane by the small molecular
weight guanine-nucleotide-binding protein, p21ras (Rob-
inson and Cobb, 1997). The regulation of p21ras is com-
plex, involving various adapter proteins and guanine-
nucleotide exchange factors (Touhara et al., 1995;
Schieffer et al., 1996a). Ligand binding to tyrosine ki-
nase receptors stimulates autophosphorylation of the
receptor, which then binds the SH2 domain of the
adapter protein, Grb2. Grb2 is complexed to the guanine
nucleotide factor, mammalian son-of-sevenless (Sos),
that then stimulates the exchange of GDP for GTP on
p21ras (Wang and McWhirter, 1994; Marshall, 1996).
Tyrosine kinase receptors therefore utilize tyrosine
phosphorylation to connect receptor activation to the
p21ras cascade. G protein-coupled receptors, such as
AT1, lack intrinsic tyrosine kinase activity but also ac-
tivate p21ras (Sadoshima and Izumo, 1997; Zou et al.,
1998). Although the exact mechanisms of AT1-activation
of p21ras are unclear, activation might occur via G pro-
tein bg subunits, by a receptor-associated tyrosine ki-
nase or by tyrosine phosphorylation of a linker protein,
such as Shc (Crespo et al., 1994; Apostolidis and Weiss,
1997; Berk and Corson, 1997; Schieffer et al., 1997).
Activity of ERKs is modulated by MAP kinase phospha-
tase (MKP-1), a dual-specificity protein tyrosine phos-
phatase that exhibits catalytic activity toward phospho-
tyrosine and phosphothreonine on MAP kinases. In
vascular smooth muscle cells, MKP-1 (the human ho-
molog is CL100, 97% identity), dephosphorylates and
inactivates ERK, JNK/SAPK, and p38 MAP kinase (Liu
et al., 1995; Bokemeyer et al., 1998). Termination of

ERK activation may also be mediated through a feed-
back loop, implicating Ras/Raf-mediated suppression of
MAP kinase activation (Hughes et al., 1997).

b. Downstream events. Events downstream to MAP
kinase activation are numerous and heterogeneous and
include PLA2, cytoskeletal proteins, the MAPK-acti-
vated protein kinase 2 (MAPKAPK-2), and the p90rsk

protein kinase, which can move to the nucleus and acti-
vate transcription factors (Morinville et al., 1998) (Fig.
9). Once phosphorylated ERKs translocate to the nu-
cleus to phosphorylate transcription factors and thereby
regulate gene expression of cell cycle-related proteins
(Treisman, 1996). Both ERK-1/ERK-2 and JNK/SAPK
lead to ternary complex formation at the serum response
element that is present on many gene promoters, and to
increased transcriptional activity (Whitmarsh et al.,

FIG. 8. Upstream regulators of Ang II-stimulated extracellular signal-
regulated kinase (ERK)-dependent signaling pathways in vascular
smooth muscle cells. The ERK phosphorylation cascade is initiated by
Ang II-binding to AT1 receptors that induces Shc-Grb2-Sos formation
(tyrosine phosphorylation of Shc), which in turn facilitates guanine nu-
cleotide exchange on the small G protein Ras-GDP/GTP. Activated Ras-
GTP interacts with the Ser/Thr kinase Raf (MAPK kinase kinase (MAP-
KKK)) which translocates to the cell membrane. Activation of Raf leads to
phosphorylation of two serine residues present in MEK (MAPK/ERK
kinase), which in turn phosphorylates Thr/Tyr and activates MAPK,
present as a 44- (ERK-1) and a 42-kDa (ERK-2) isoform. Phosphorylated
ERK has diverse intracellular protein targets, which it phosphorylates
and activates (Fig. 9). Dephosphorylation of ERK is accomplished by
activation of MAP kinase phosphatase-1 (MKP-1).

TOUYZ AND SCHIFFRIN 651

 by guest on June 15, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


1995). Alternatively, phosphorylation of the translation
regulator protein, PHAS-I (phosphorylated heat- and
acid-stable protein) promotes the dissociation of the
PHAS-I-eukaryotic initiation factor (eIF)-4E complex,
normally tightly bound when PHAS-I is relatively un-
derphosphorylated, releasing eIF-4E that will facilitate
initiation of translation in the nucleus (Brunn et al.,
1997). In vascular smooth muscle cells, another down-
stream target of ERK is the serine/threonine protein
kinase pp90rsk, which phosphorylates the S6 ribosomal
protein and stimulates protein synthesis (Berk and Cor-
son, 1997). ERK-1/ERK-2 activation ultimately results
in enhanced proto-oncogene expression, and activation
of the AP-1 transcription factor and probably regulates
cell cycle progression as well as protein synthesis in
vascular smooth muscle cells (Watson et al., 1993). Ang
II may also induce protein synthesis by an ERK-inde-
pendent pathway in part via activation of the 70-kDa S6
kinase (Giasson and Meloche, 1995). Other downstream
targets of MAP kinases include cyclooxygenase-2, the
contractile regulatory protein h-caldesmon, the high-

molecular weight form of caldesmon, myelin basic pro-
tein, microtubule-associated protein, Ca21 channels,
and the Na1/H1 exchanger (Adam et al., 1995; Bornfeldt
et al., 1997; Kusuhara, 1998). The functional outcome of
MAP kinase activation probably depends in part on the
availability of downstream substrates.

c. Angiotensin II and the mitogen-activated protein
kinase pathway in cardiovascular cells. Ang II acti-
vates the MAP kinase signaling cascade at various in-
tracellular levels. It induces tyrosine and threonine
phosphorylation of ERK-1/ERK-2, JNK/SAPK, and p38
in cultured vascular smooth muscle cells, as well as in
intact arteries (Schieffer et al., 1996a,b; Epstein et al.,
1997; Touyz et al., 1999c,d). It stimulates phosphoryla-
tion of Ras, Raf, and Shc, and it increases activity of
MEK kinase and MEK (Eguchi et al., 1996; Liao et al.,
1996; Sadoshima and Izumo, 1996; Schieffer et al.,
1996a; Griendling and Ushio-Fukai, 1997; Touyz et al.,
1999c). In addition, Ang II increases activation of vas-
cular Src and PYK2, potential links between the AT
receptor and Ang II-induced ERK signaling in vascular
smooth muscle cells (Ishida et al., 1998; Murasawa et
al., 1998b; Eguchi et al., 1999a). MAP kinase activation
by Ang II is transient, with a peak at 3 to 5 min. Activity
remains elevated at suprabasal levels for at least 60 min
(Eguchi et al., 1996; Touyz et al., 1999b). Ang II stimu-
lates ERK-dependent pathways via AT1 receptors (Fle-
sch et al., 1995; Booz and Baker, 1996; Kudoh, 1997;
Touyz et al., 1999c) and is associated with increased
expression of the early response genes c-fos, c-myc, and
c-jun (Naftilan et al., 1989; Lyall et al., 1992), DNA
synthesis, cell growth and differentiation, and cytoskel-
etal organization (Seewald et al., 1998; Touyz et al.,
1999b). Both Ras/Raf-dependent and -independent path-
ways have been implicated in Ang II-stimulated MAP
kinase activation and protein synthesis in cultured vas-
cular smooth muscle cells (Liao et al., 1996; Takahashi,
1997a,b).

In addition to ERKs, Ang II activates JNK/SAPKs,
which regulate vascular smooth muscle cell growth by
promoting apoptosis or by inhibiting growth (Kudoh,
1997; Wen et al., 1997; Ip and Davis, 1998; Schmitz et
al., 1998). Ang II phosphorylates JNK/SAPK via p21-
activated kinase (aPAK), which is dependent on intra-
cellular Ca21 mobilization and on PKC activation
(Schmitz et al., 1998). Following phosphorylation, the
isoforms JNK-1 and JNK-2 translocate to the nucleus to
activate a number of transcription factors, such as c-
Jun, ATF-2, and Elk-1 (Ip and Davis, 1998). Ang II
appears to activate vascular smooth muscle cell ERK-1/
ERK-2 and JNK/SAPK via different signaling pathways.
ERK phosphorylation occurs via a Ca21-dependent or
-independent pathway that involves c-Src and the atyp-
ical PKC isoform PKC-j (Liao et al., 1997), whereas
JNK/SAPK activation occurs via a Ca21-dependent
pathway that involves a tyrosine kinase other than Src
and a novel PKC isoform (Schmitz et al., 1998). Further-

FIG. 9. Downstream effectors of activated ERK. Once phosphorylated,
ERK activates various intracellular proteins. These substrates include: 1)
proteins involved in transcriptional activation such as Elk-1, TAL 1, RNA
polymerase II; 2) proteins involved in protein translation such as PHAS
I; 3) structural proteins such as myelin basic protein (MBP), microtubule-
associated protein (MAP) and caldesmon; and 4) secondary enzymes such
as PLA2, S6 kinase, Ca21 channels, Na1/H1 exchanger, and MAP kinase-
activated protein kinase (MAPKAPK2). Activation of these downstream
proteins regulates cellular functions associated with cell growth and
contraction.
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more, whereas Ang II-induced phosphorylation peaks
within 5 min, kinase activation is maximal at about 30
min (Kusuhara, 1998). The exact functional effects of
Ang II-induced signaling of ERK-1/ERK-2 and JNK/
SAPK in vascular smooth muscle cells are ill-defined,
but regulation of cell growth may be important as Ang
II-activated ERKs and JNK/SAPKs have opposite
growth effects, with ERKs facilitative and JNK/SAPK
inhibitory. These signaling processes and associated cel-
lular functions are potentially important in enhanced
vascular contractility, hyperplasia, and/or hypertrophy
in hypertension (Schelling et al., 1991).

Recent studies demonstrated that Ang II also phos-
phorylates vascular p38 MAP kinase, which plays an
important role in inflammatory responses, apoptosis
and inhibition of cell growth (Kusuhara, 1998; New and
Han, 1998; Ushio-Fukai et al., 1998b). In the cardiovas-
cular system, the p38 pathway has been implicated in
cardiac ischemia, ischemia/reperfusion injury, cardiac
hypertrophy, progression of atherosclerosis, and arterial
remodeling in hypertension (New and Han, 1998). The
specific upstream and downstream regulators of Ang
II-activated p38 in vascular smooth muscle cells are
unclear, but p38 could be a negative regulator of ERK-
1/ERK-2 (Kusuhara et al., 1998). p38 has been impli-
cated to be an essential component of the redox-sensitive
signaling pathways in Ang II-activated vascular smooth
muscle cells (Ushio-Fukai et al., 1998b).

Inactivation of Ang II-stimulated MAP kinases occurs
via MKP-1-induced dephosphorylation of both tyrosine
and threonine on MAP kinases. Inhibition of MKP-1
results in sustained activation of MAP kinase in re-
sponse to Ang II, suggesting that this enzyme is primar-
ily responsible for the termination of the MAP kinase
signal (Duff et al., 1993, 1995). In vascular smooth mus-
cle cells, Ang II modulates MKP-1 activity. MKP-1 ex-
pression is stimulated by Ang II, and activities of
MKP-1, as well as tyrosine phosphatase (PTP-1C), and
Ser/Thr phosphatase PP2A, are increased by Ang II
(Kambayashi, 1993; Bedecs et al., 1997; Horiuchi et al.,
1997a). These effects appear to be mediated via the AT2
receptor subtype, which has been associated with inhi-
bition of cell growth and apoptosis (Bedecs et al., 1997;
Horiuchi, 1997a,b; Fischer et al., 1998). Accordingly,
AT1 receptors induce growth via stimulation of ERK-
dependent signaling pathways, whereas AT2 receptors
oppose these effects by stimulating MKP-1 activity to
inhibit ERK activity, and to arrest the cell growth sig-
nal. Termination of Ang II-stimulated MAP kinase ac-
tivity may also involve activation of protein kinase A
(PKA), which inhibits the phosphorylation of Raf-1
(Cook and McCormick, 1993).

3. Activation of Phospholipase A2 and Arachidonic
Acid Metabolism. Ang II stimulates PLA2 activity,
which is responsible for the release of arachidonic acid
from cell membrane phospholipids (Bonventre, 1992;
Rao et al., 1994). Released arachidonic acid is processed

by cyclooxygenases, lipoxygenases, or cytochrome P450
oxygenases to many different eicosanoids in vascular
and renal tissues (Fig. 5). Cyclooxygenases catalyze the
formation of prostaglandin (PG) PGH2, subsequently
converted to thromboxane (TXA) by thromboxane syn-
thase, to PGI2 (or prostacyclin) by prostacyclin synthase,
or to PGE2, PGD2 or PGF2a, by different enzymes (Smith
et al., 1991). Lipoxygenases catalyze the formation of 5-,
12-, or 15-HPETEs, that then undergo spontaneous or
peroxidase-catalyzed reduction to the corresponding
HETEs, and in the case of 5-HPETE to leukotrienes
(Yamamoto, 1992). Cytochrome 450 oxygenases catalyze
arachidonic acid epoxidation to epoxyeicosatrieenoic ac-
ids, v and v-1 hydroxylation to 20- and 19-HETE, and
allylic oxidation to other HETEs (Harder et al., 1995;
Dennis, 1997).

PLA2-derived eicosanoids influence vascular and re-
nal mechanisms important in blood pressure regulation
(Nasjletti, 1997). Vascular PLA2 activity in response to
Ang II is evident within minutes and is sustained for at
least 30 min after Ang II stimulation (Rao et al., 1994).
In vascular smooth muscle cells and endothelial cells,
these effects are mediated via AT1 receptors (Pueyo et
al., 1996; Freeman et al., 1998), whereas in neonatal rat
cardiac myocytes, neuronal cells, and renal proximal
tubule epithelial cells, Ang II-induced activation of PLA2

occurs via AT2 receptors (Rogers and Lokuta, 1994;
Lokuta et al., 1994; Dulin et al., 1998; Zhu et al., 1998b).
Ang II-elicited activation of vascular PLA2 is dependent
on [Ca21]i, Ca21-calmodulin-dependent protein kinase
II (CaM kinase II), and MAP kinases (Muthalif et al.,
1998a,b). Activated PLA2 and its metabolites in turn
activate Ras/MAP kinase-dependent signaling path-
ways, amplifying PLA2 activity and releasing additional
arachidonic acid by a positive feedback mechanism
(Muthalif et al., 1998a). In renal epithelial cells, Ang II
activates PLA2 via an AT2-mediated Ca21-independent
mechanism (Jacobs and Douglas, 1996; Becker et al.,
1997). Renal-derived arachidonate phosphorylates the
adaptor protein Shc and stimulates its association with
Grb2 and Sos 1 (Dulin et al., 1998). Ang II-generated
eicosanoids regulate vascular contraction and growth,
possibly by activating MAP kinases and redox sensitive
pathways (Nasjletti, 1997; Dulin et al., 1998). Throm-
boxanes are involved in Ang II-induced contraction,
whereas vasorelaxant prostaglandins such as PGE2 and
PGI2 attenuate Ang II-mediated vasoconstriction in
some vascular beds (Wilcox and Lin, 1993). Lipoxygen-
ase-derived eicosanoids also influence Ang II-mediated
actions in vascular smooth muscle cells. 12-HETE facil-
itates the stimulatory actions of Ang II on Ca21 tran-
sients in cultured cells. Lipoxygenase inhibitors attenu-
ate the vasoconstrictor action of Ang II and decrease
blood pressure in SHR (Stern et al., 1993; Oyekan et al.,
1997). Some of these effects elicited by Ang II-generated
arachidonic acid metabolites may be mediated via mod-

TOUYZ AND SCHIFFRIN 653

 by guest on June 15, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


ulation of the oxidative state of the cell (Zafari et al.,
1996).

4. Phospholipase D activation. PLD, which hydro-
lyzes phospholipids (mainly phosphatidylcholine) to
generate phosphatidic acid, is a critical component in
cellular signaling associated with mitogenesis (Dhalla et
al., 1997; Gomez-Cambronero and Kiere, 1998). Sus-
tained activation of PLD is a major source of prolonged
second messenger generation in vascular smooth muscle
cells and cardiomyocytes. Unlike PLC, which is acti-
vated within seconds by Ang II, PLD activation is de-
tectable at about 2 min and remains elevated for up to 60
min (Lassègue, 1993). In contrast to the PLC response,
PLD activation does not appear to desensitize signifi-
cantly during this time period (Lassègue, 1993). Hydro-
lysis of phosphatidylcholine by PLD leads to the produc-
tion of phosphatidic acid and subsequent generation of
DAG by phosphatidic acid phosphohydrolase (Billah,
1993) (Fig. 5). DAG contributes to prolonged activation
of PKC. This pathway probably represents the major
cascade by which Ang II-induced activation of PKC re-
mains sustained in vascular smooth muscle cells. Molec-
ular mechanisms coupling AT1 receptors to PLD have
recently been identified. G protein bg subunits as well as
their associated Ga12 subunits mediate Ang II-induced
PLD activation via Src-dependent pathways in vascular
smooth muscle cells (Freeman, 1995; Ushio-Fukai et al.,
1999b). The small molecular weight G protein RhoA is
also involved in these signaling cascades (Exton, 1997).
The downstream pathways associated with Ang II-in-
duced activation of PLD in vascular smooth muscle cells
are PKC-independent (Freeman et al., 1995) but involve
intracellular Ca21 mobilization (Freeman et al., 1995)
and Ca21 influx that is tyrosine kinase-dependent (Su-
zuki et al., 1996). Ang II-induced PLD signaling has
been implicated in cardiac hypertrophy as well as in
proliferation of vascular smooth muscle cells (Morton et
al., 1995; Dhalla, 1997). PLD-dependent signaling cas-
cades also influence cardiac and vascular contraction
(Xu et al., 1996b). These effects are mediated via phos-
phatidic acid and other PLD metabolites (Boarder, 1994;
Wilkie et al., 1996; Dhalla, 1997) that influence vascular
generation of superoxide anions by stimulating NADH/
NADPH oxidase (Griendling et al., 1994; Gomez-Cam-
bronero and Kiere, 1998; Ushio-Fukai et al., 1998b), that
activate tyrosine kinases and Raf and that modulate
intracellular Ca21 signaling (Boarder, 1995; Eskildsen-
Helmond et al., 1997; Gomez-Cambronero and Kiere,
1998). The long-term signaling pathways associated
with Ang II-stimulated growth and remodeling in the
cardiovascular system are dependent, in part, on PLD-
mediated responses.

5. Angiotensin II Effects on Cyclic Nucleotides. The
cyclic nucleotides cAMP and cGMP are generated intra-
cellularly within minutes by adenylate cyclase and
guanylate cyclase, respectively, via a cyclasing reaction
of a-phosphate and release of pyrophosphate from the

substrates ATP or GTP in the presence of Mg21. Down-
stream targets of cyclic nucleotides include cAMP-de-
pendent protein kinase, cGMP-dependent protein ki-
nase, intracellular Ca21, and ionic channels (Bentley
and Beavo, 1992). Increased cyclic nucleotide concentra-
tion leads to decreased [Ca21]i and reduced Ca21 sensi-
tivity of phosphorylation in vascular smooth muscle,
with resultant smooth muscle relaxation (Brophy et al.,
1997; Frings, 1997). Ang II influences vascular dilation
either directly, by increasing intracellular cAMP and
cGMP concentrations, or indirectly, by potentiating va-
sodilator-induced formation of cyclic nucleotides. Ang II
stimulation increases cAMP and/or cGMP production in
cardiomyocytes, vascular smooth muscle cells, and mes-
angial cells, as well as in intact arteries (Boulanger et
al., 1995; Magness et al., 1996; Siragy and Carey, 1997;
Gohlke et al., 1998). These effects involve kinin-depen-
dent mechanisms mediated via receptors of the AT2
subtype (Siragy and Carey, 1997; Gohlke et al., 1998). In
rat carotid arteries Ang II increases release of nitric
oxide and cGMP production via endothelial AT1 recep-
tors (Boulanger et al., 1995; Caputo, 1995). Ang II also
induces vasorelaxation by enhancing the vasodilatory
effect of agonists such as isoproterenol (McCumbee et
al., 1996; Brizzolara-Gourdie and Webb, 1997;
Mokkapatti et al., 1998). In pathological conditions, AT2
receptor stimulation is associated with reduced vascular
cGMP levels (Moroi et al., 1997). The vasodilatory effects
of Ang II linked to the AT2 receptor oppose the vasocon-
strictory actions of Ang II linked to the AT1 receptor.
Cross-talk between these pathways could represent an
important mechanism in the modulation of Ang II-reg-
ulated vascular tone.

G. Long-Term Effects Mediated by Angiotensin II

Ang II influences the long-term control of cellular
growth, adhesion, and migration, as well as intercellular
matrix deposition within the vasculature and the heart
thereby influencing chronic adaptive changes in vascu-
lar remodeling, cardiac hypertrophy, as well as pro-
cesses involved in atherosclerosis. Intracellular cascades
underlying long-term Ang II signaling involve early ac-
tivation of various kinases (discussed above) that phos-
phorylate downstream targets regulating chronic and
sustained cellular functions. Stimulation of redox-sensi-
tive pathways, induction of proto-oncogene expression,
cross-talk with tyrosine kinase receptors, production of
other growth factors and stimulation of nuclear signal-
ing cascades ultimately result in cellular growth and
differentiaition (Fig. 10).

1. Generation of Reactive Oxygen Species. Reactive
oxygen species such as superoxide anions and hydrogen
peroxide act as intercellular and intracellular second
messengers that may play a physiological role in vascu-
lar tone and cell growth, and a pathophysiological role in
inflammation, ischemia-reperfusion, hypertension, and
atherosclerosis (Alexander, 1995; Irani et al., 1997; Diaz
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et al., 1997; Griendling and Ushio-Fukai, 1997; Finkel,
1998; Abe and Berk, 1998). Xanthine oxidase, mitochon-
drial oxidases and arachidonic acid are the major
sources of oxidative molecules in nonvascular tissue
(Finkel, 1998), whereas a nonmitochondrial, membrane-
associated NADH/NADPH oxidase appears to be the
most important source of superoxide anion (O2

.) in vas-
cular cells (Griendling et al., 1994; Rajagopalan et al.,

1996; Pagano et al., 1998; Lieberthal et al., 1998). This
enzyme transfers electrons from NADH or NADPH to
molecular oxygen, producing superoxide anion (Fig. 11).
The complete molecular structure of the vascular oxi-
dase is unknown, but it shares some features with the
neutrophil oxidase. In neutrophils, NADH/NADPH oxi-
dase consists of five subunits: a 22-kDa a-subunit
(p22phox), a glycosylated 91-kDa b-subunit (gp91phox),

FIG. 10. Long-term signaling events in vascular smooth muscle cells induced by Ang II stimulation. Activation of upstream regulators by Ang II,
such as tyrosine kinases, MAP kinases, PLD, and PLA2 lead to activation of various signaling pathways that modulate long-term functions of vascular
smooth muscle cells. These include generation of reactive oxygen species via membrane-associated NADH/NADPH oxidase, induction of proto-
oncogene expression, cross-talk with tyrosine kinase receptors, stimulation of nuclear signaling cascades and production of other growth factors. The
biological response of these signaling events is increased protein synthesis resulting in cell growth that contributes to vascular remodeling. zO2

.,
superoxide anion; H2O2, hydrogen peroxide; SOD, superoxide dismutase.

FIG. 11. Generation of reactive oxygen species in the vasculature. Many enzyme systems stimulate production of superoxide anion (zO2
.) from O2.

These include NADH/NADPH oxidase, xanthine oxidase, lipoxygenase, cyclooxygenase, P450 monooxygenase, and mitochondrial oxidative phosphor-
ylation. NADH/NADPH is a multi-subunit enzyme that is the major regulated source of reactive oxygen species in endothelial and vascular smooth
muscle cells. Dismutation of zO2

. spontaneously or enzymatically by superoxide dismutase (SOD) produces hydrogen peroxide (H2O2) that can undergo
further reactions to generate the highly reactive hydroxyl radical (zOH). H2O2 may be metabolized by catalase or peroxidases to H2O and O2.
Downstream targets of zO2

. and H2O2 include ERK5, p38, tyrosine kinases, Src, and NF-kB.
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which together make up cytochrome b558, the electron
transfer element; cytosolic components p47phox and
p67phox; and a low-molecular weight G protein, rac1 or
rac2 (Jones, 1994). Upon activation, the p47phox and
p67phox proteins are translocated to the membrane and
associate with the cytochrome b558, creating the active
oxidase. In vascular smooth muscle cells, p22phox is a
critical component of the superoxide-generating NADH/
NADPH oxidase system (Ushio-Fukai et al., 1996). Ang
II activation of NADH/NADPH oxidase is delayed and is
only detectable in vascular smooth muscle cells about 60
min after Ang II stimulation (Griendling et al., 1994;
Touyz and Schiffrin, 1999b). The effect is sustained for
up to 24 h, suggesting that NADH/NADPH oxidase-
dependent signaling pathways probably play an impor-
tant role in Ang II-mediated long-term signaling events
such as cell growth. In support of this, when NADH/
NADPH oxidase is inhibited by the selective inhibitor
diphenylene iodinium (DPI), Ang II-stimulated protein
synthesis in vascular smooth muscle cells is also inhib-
ited (Griendling et al., 1994; Ushio-Fukai et al., 1998b).
The O2

. that is generated by NADH/NADPH oxidase is
rapidly converted by superoxide dismutase to H2O2,
which is scavenged by catalase or by peroxidases (Fri-
dovich, 1997) (Fig. 10). O2

. and H2O2 can undergo further
reactions with each other or with iron-containing mole-
cules to generate the highly reactive hydroxyl radical
(zOH) (Fridovich, 1997).

Generation of reactive oxygen species is regulated by
various cytokines and growth factors, including Ang II,
which increases O2

. and H2O2 production in cardiac,
vascular smooth muscle, endothelial, adventitial, and
mesangial cells (Griendling et al., 1994; Jaimes et al.,
1998; Pagano et al., 1998; Ushio-Fukai et al., 1998b;
Touyz and Schiffrin, 1999b) and generation of reactive
oxygen species has been implicated in the pathogenesis
of Ang II-induced but not catecholamine-induced hyper-
tension (Rajagopalan et al., 1996; Laursen, 1997). Mech-
anisms underlying oxidative stress-induced hyperten-
sion may be associated with degradation of endothelium-
derived NO and with the potent vascular mitogenic
effects of O2

. and H2O2 (Rao and Berk, 1992; Ushio-Fukai
et al., 1996; Oskarsson and Heistad, 1997; Lu et al.,
1998; McIntyre et al., 1999). Growth of vascular smooth
muscle cells has an essential redox-sensitive component,
which appears to be mediated in part via activation of
ERK-5 (Abe et al., 1996). Reactive oxygen species stim-
ulate hyperplasia and hypertrophy of vascular smooth
muscle cells, whereas antioxidants inhibit growth, trig-
ger apoptosis, and attenuate the response to growth
factors and hypertrophic agents (Boscoboinik et al.,
1991; Rao and Berk, 1992; Puri et al., 1995; Tsai et al.,
1996). Ang II-mediated oxidative stress has recently
been shown to stimulate endothelial vascular cell adhe-
sion molecule-1, important in cell-cell interactions, and
possibly in processes associated with atherosclerosis
(Pueyo et al., 2000). The signaling pathway linking Ang

II-stimulated generation of H2O2 to vascular growth has
recently been identified as p38 MAP kinase (Ushio-Fu-
kai et al., 1998b). Although ERK-5 is a redox-sensitive
kinase, Ang II does not appear to mediate its oxidative
stress-induced growth effects via this MAP kinase (Abe
et al., 1996). Another redox-sensitive cascade whereby
Ang II influences cell growth is through phosphorylation
of the cell survival protein kinase Akt/PKB (Ushio-Fukai
et al., 1999b).

2. Angiotensin II-Induced Expression of Proto-Onco-
genes and Growth Factors. Long-term control of Ang
II-regulated cellular growth, adhesion, migration, fibro-
sis, and collagen deposition within the vasculature in-
volves protein synthesis (Fig. 10). Ang II induces the
expression of several proto-oncogenes in human and rat
vascular smooth muscle cells, including c-fos, c-jun, c-
myc, erg-1, VL-30, proto-oncogene/activator protein 1
complex (Lyall et al., 1992; Grohé et al., 1994; Duff et al.,
1995; Pollack, 1995; Puri et al., 1995; Patel et al., 1996).
Ang II increases expression of vascular c-fos in a PKC-
and Ca21-dependent manner via multiple regulatory
mechanisms (Garcia-Sainz et al., 1995; Chen et al.,
1996). The c-fos promoter contains a cAMP/calcium re-
sponse element (CRE), a serum response element (SRE),
and a sis-inducing factor element (SIE) (Bhat et al.,
1994). These promoter elements are regulated by vari-
ous proteins activated by Ang II, including cAMP and
PKA, which regulate CRE, MAPK-stimulated phosphor-
ylation of p62TCF and PKC, which regulate SRE, and
STATs, which regulate SIE (Marrero et al., 1995a).
Stimulation of early response genes by Ang II is associ-
ated with increased gene expression and production of
growth factors, such as PDGF, EGF, transforming
growth factor-b (TGF-b), insulin-like growth factor-1
(IGF-1), basic fibroblast growth factor (bFGF) and plate-
let activating factor (PAF) (Dubey, 1997; Force and Bon-
ventre, 1998), vasoconstrictor agents, such as ET-1 (Itoh
et al., 1993), adhesion molecules such as ICAM-1,
VCAM-1, and E-selectin, and integrins anb3 and b5 (Kim
et al., 1996; Krejcy et al., 1996; Grafe et al., 1997; Hsueh
et al., 1998), and finally, chemotactic factors such as
tumor necrosis factor-a (TNF-a) and monocyte chemoat-
tractant protein-1 (MCP-1) (Chen et al., 1998).

Ang II is a powerful mitogen for many cell types and a
potent competence and/or progression factor, stimulat-
ing transition from the Go-Gi phase in the cell cycle,
which leads to increased DNA synthesis in certain con-
ditions and to mitogenesis in combination with other
growth factors (Owens et al., 1981; Gibbons et al., 1992;
Jahan et al., 1996). Ang II induces hypertrophy and/or
hyperplasia of vascular cells, both in vivo (Li et al.,
1998a; Levy, 1998; Schiffrin et al., 2000) and in vitro
(Touyz and Schiffrin, 1997a,b) and is a potent stimulus
for collagen and fibronectin production (Kaiura et al.,
2000). These effects may be direct, via activation of
ERK-1/ERK-2-dependent pathways and by activation of
70-kDa S6 kinase, an ERK-independent pathway, or
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indirectly, by increasing the local production of TGF-b,
PDGF, bFGF, ET-1, IL-6, PAF, IGF-1, heparin-binding
EGF, and osteopontin (Gomez-Garre et al., 1996; Dubey,
1997; Mangiarua et al., 1997; Schott et al., 1997; Border
and Noble, 1998). TGF-b and PDGF may play pivotal
roles in the vascular growth effects of Ang II. In human
and rat vascular smooth muscle cells, Ang II up-regu-
lates TGF-b mRNA levels and increases production of
TGF-b through the AP-1 complex (Liu et al., 1997; Mor-
ishita et al., 1998; Fukai, 2000). Ang II-stimulated hy-
perplasia is significantly increased in the presence of
TGF-b antibodies, whereas in their absence, Ang II in-
duces hypertrophy of vascular smooth muscle cells (Itoh
et al., 1993; Dubey, 1997). TGF-b also contributes to the
fibrogenic and migratory actions of Ang II. In vascular
smooth muscle and mesangial cells, Ang II time and
dose dependently increase TGF-b mRNA, which is asso-
ciated with increases in mRNAs for matrix proteins
biglycan, fibronectin, and collagen type 1 (Border and
Noble, 1998). In the presence of neutralizing antibody to
TGF-b, matrix protein production is almost completely
blocked, indicating that Ang II-stimulated increases in
extracellular matrix production are mediated in large
part by TGF-b (Kagami et al., 1994). In human and rat
vascular smooth muscle cells, Ang II induces a bimodal
migratory effect where both migratory and antimigra-
tory pathways are activated. Ang II directly stimulates
migration in a concentration-dependent manner
whereas autocrine release of TGF-b1 induced by Ang II
has an antimigratory action (Liu et al., 1997).

PDGF-A mRNA expression and PDGF-A secretion as-
sociated with increased expression of c-fos and c-myc
and augmented cell growth, are enhanced by Ang II
(Naftilan et al., 1989; Linesman et al., 1995; Mangiarua
et al., 1997). Interestingly, Ang II exerts a transient
inhibitory effect on PDGF-BB-induced DNA synthesis,
and reduces vascular smooth muscle cell proliferation
(Dahlfors et al., 1998). The interaction between Ang II
and PDGF is complex, as the growth response induced
by Ang II-mediated PDGF is dependent on the form of
PDGF produced. The homodimer AA is a less potent
mitogen than its AB or BB counterparts. Other growth
factors that also play a role in Ang II-stimulated vascu-
lar growth include IGF, EGF, and bFGF. Ang II in-
creases IGF-1 receptor mRNA levels and IGF-1 receptor
gene transcription in vascular smooth muscle cells via
PKC-independent pathways (Du et al., 1996). In addi-
tion, Ang II stimulates tyrosine phosphorylation and
activation of insulin receptor substrate 1 and protein-
tyrosine phosphatase 1D, suggesting the presence of a
convergent intracellular signaling cascade that is stim-
ulated by IGF-1 and Ang II (Ali et al., 1997). In large but
not in small arteries, Ang II stimulates smooth muscle
cells replication dependent on mediation by bFGF (Su et
al., 1998). This differential response may be important
in vessel wall remodeling in atherosclerosis and follow-
ing balloon injury. In rat aortic vascular smooth muscle

cells, Ang II increased FGF-2 but not FGF-1 mRNA
levels (Peifley and Winkles, 1998). EGF also induces
growth actions of Ang II, but these effects appear to be
mediated via Ang II-induced transactivation of the EGF
receptor by a PKC-independent Ca21/calmodulin-depen-
dent pathway (Murasawa et al., 1998a). Besides growth
factors, mechanical stretch and collagen potentiate the
mitogenic activity of Ang II in vascular smooth muscle
cells. This synergy is blocked by antibodies to PDGF-BB
and TGF-b (Hsueh et al., 1995; Li et al., 1998b,c). Ang II
also stimulates production of chemotactic factors that
may be important in vascular inflammatory processes
associated with cardiovascular diseases. Ang II stimu-
lates monocyte chemoattractant protein-1 gene expres-
sion in rat vascular smooth muscle cells (Chen et al.,
1998) and in renal tissue, Ang II increases expression of
TNF mRNA and enhances production of TNF 5-fold
(Ferreri et al., 1998).

Ang II controls growth by inhibiting cellular prolifer-
ation and hypertrophy and/or by inducing apoptosis (de-
Blois et al., 1997; Diep et al., 1999). In vascular smooth
muscle cells, Ang II inhibits apoptosis via AT1 receptors,
whereas it induces apoptosis via AT2 receptors (Pollman
et al., 1996; Yamada et al., 1998; Horiuchi et al., 1999;
Lemay et al., 2000). The AT2-mediated proapoptotic ef-
fects of Ang II have been demonstrated in vascular
smooth muscle cells, neonatal cardiomyocytes, PC12W
cells, R3T3 mouse fibroblasts, and human umbilical vein
endothelial cells (Hayashida et al., 1996; Yamada et al.,
1996; Dimmeler et al., 1997; Horiuchi et al., 1997a). The
exact signaling pathways associated with these actions
have not yet been fully identified, but inhibition of ERK
activity, by MKP-1, may result in inactivation of Bcl-2,
activation of caspases and the induction of apoptosis
(Dimmeler et al., 1997; Horiuchi et al., 1997a; Yamada
et al., 1998). The role of AT2-mediated actions has re-
cently been extensively reviewed (Matsubara et al.,
1998; Horiuchi et al., 1999) and the reader is referred to
these reviews for more detailed information.

Ang II influences the architecture and integrity of the
vascular wall by modulating cell growth and regulating
extracellular matrix composition. It increases expres-
sion and production of fibronectin, collagen type 1, tena-
scin, glycosaminoglycans, chondroitin/dermatan sul-
fates, and proteoglycans, major constituents of the
extracellular matrix in the vessel wall (Hsueh et al.,
1995; Dubey et al., 1997). In vascular smooth muscle
cells, mesangial cells and endothelial cells, Ang II in-
creases levels and activity of plasminogen activator in-
hibitor-1 (PAI-1), influencing fibrinolysis, extracellular
matrix turnover, and degradation and regulation of cell
migration (Feener et al., 1995; Oikawa et al., 1997; Wil-
son et al., 1997; Yoshizumi et al., 1998). Some of these
effects have been linked to the AT4 receptor subtype
(Kerins et al., 1995). However this remains to be clari-
fied. Ang II also stimulates activity of matrix metallo-
proteinases (Singhal et al., 1995) responsible for extra-
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cellular matrix degradation. Accordingly, Ang II
influences vascular structure by stimulating synthesis
of structural components of the extracellular matrix
(Egido, 1996) and by increasing production of factors
that degrade the extracellular matrix proteins (Oikawa
et al., 1997; Wilson et al., 1997; Yoshizumi et al., 1998).

H. Why the Special Role for Angiotensin II Signaling
in Vascular Smooth Muscle Cells?

In vivo, Ang II does not act alone and many vasoactive
agents that signal through G protein-coupled receptors,
such as ET-1, AVP, catecholamines, and serotonin, in-
fluence vascular smooth muscle cell function. Each ago-
nist binds to its specific Gq-linked receptor to elicit a
signaling response that translates into a functional
event, such as contraction, hypertrophy or proliferation.
Although these agonists mediate effects through similar
signal transduction pathways the relative importance of
each is probably related to unique processes associated
with receptor expression, ligand-receptor interactions,
receptor phosphorylation, G protein coupling to second
messengers and cytosolic proteins, cross-talk between
signaling pathways, termination of signaling events and
receptor internalization (Fig. 12). Other important char-
acteristics that differentiate cellular responses to ago-
nists that signal through similar pathways relate to: 1)
underlying mechanisms generating the signal; 2) kinet-
ics of the signaling event; and 3) magnitude of the signal.
For example, in vascular smooth muscle cells, Ang II
and ET-1 both increase [Ca21]i. However, the underly-
ing processes and kinetics are different (Fig. 13).
Whereas Ang II elicits a potent biphasic response that is
generated primarily by mobilization of Ca21 from intra-
cellular stores, ET-1 increases [Ca21]i mainly by stimu-
lating influx through Ca21 channels (Dostal et al., 1990;
Douglas and Ohlstein, 1997). Furthermore Ang II-elic-
ited [Ca21]i responses and associated vascular smooth

muscle cell contraction are relatively rapid, whereas
ET-1 actions are more sustained. The kinetics of ERK
activation by Ang II and ET-1 are also different. Maxi-
mal ERK phosphorylation by Ang II occurs within 5 min,
whereas ET-1-stimulated ERK activation peaks later
(Eguchi et al., 1996; Douglas and Ohlstein, 1997; Touyz
et al., 1999c). These differences could be due to differen-
tial regulation of ERK by the two peptides and may
explain, in part, why Ang II has a potent mitogenic
effect, whereas ET-1 requires the presence of co-mito-
gens to elicit its growth action. Thus activation of com-
mon signaling pathways by different agonists may man-
ifest as diverse functional responses (Fig. 12).

Of the many G protein-coupled receptors, those linked
to Ang II seem to be one of the most important in
vascular smooth muscle cell regulation. This is sup-
ported by in vivo studies that demonstrate that ACE
inhibitors and AT1 receptor blockers attenuate Ang II-
mediated signal transduction and decrease vascular
smooth muscle cell functional and growth responses.
Exact reasons for the apparent selective importance of
Ang II are unclear but may be due to the ability of Ang
II to amplify its vascular responses via other agonists.
Ang II stimulates production of growth factors and va-
soactive peptides, such as PDGF and ET-1, respectively,
as well as transactivates multiple receptors, such as
IGF, PDGF, and EGF, thereby amplifying vascular
smooth muscle cell signaling responses to Ang II. Selec-
tive activation of multiphasic signaling pathways that
cross-talk with other cascades, together with the pheno-
type of the stimulated vascular smooth muscle cell de-
termines whether the cell undergoes contraction, prolif-
eration, hypertrophy, and/or migration in response to
Ang II. Another distinguishing feature of Ang II is the
down-regulation of Ang II responsiveness (tachyphylax-
is, desensitization) to repeated applications of Ang II. In
vascular smooth muscle cells, Ang II down-regulates its
own receptor, decreases the amount and coupling to Gq
and increases G protein receptor kinase 5 (GRK5)
mRNA and protein expression, which reduces efficiency
of coupling between the receptor and G protein. The net
effect of these processes is attenuation of responsiveness
to Ang II. Although tachyphylaxis is a phenomenon com-
mon to many vasoactive agents, it is particularly potent
for Ang II (Harada et al., 1999). AT receptor internal-
ization and creation of a signaling domain specific for
Ang II further contribute to unique signaling events
associated with this peptide. These special qualities and
the ability to stimulate production of agonists that sig-
nal through other Gq-linked receptors suggest that Ang
II is an important primary regulator of vascular smooth
muscle cell function. The role of G protein signaling in
vascular smooth muscle cells is probably not exclusive
for Ang II. However, most of our current knowledge on
signal transduction pathways in vascular smooth mus-
cle cells has been described for Ang II. As we learn more
about signaling processes for other vasoactive agents it

FIG. 12. Scheme demonstrating mechanisms whereby different li-
gands that signal through Gq-coupled receptors can elicit diverse cellular
responses. The specificity of response in a given cell is achieved by
differential expression of the receptors that activate the signaling event
and the nature of the intracellular signal. As indicated, Gq receptor
coupling elicits common signals (A and B). However, the intensity of the
signal, the kinetics and the cross-talk between signals differ between the
cells. These differential processes result in integrated cellular responses,
specific for each ligand. Rec, receptor;1, increased intensity of signal;2,
decreased intensity of signal.
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may become evident that many G protein-coupled recep-
tors could be equally important in vascular smooth mus-
cle cell regulation.

II. Altered Angiotensin II Signaling in Vascular
Smooth Muscle Cells in Cardiovascular

Diseases—Special Reference to Hypertension

A. Introduction

Ang II is an exceptional peptide that generates signal-
ing events to elicit pleiotropic effects in vascular smooth
muscle cells. Not only does it stimulate classic G protein-
coupled phospholipases to induce contraction, but it also
activates many tyrosine kinase pathways that are char-
acteristically associated with growth, inflammatory, mi-
gratory, and fibrotic responses. These data suggest that
Ang II is crucial in maintaining the structural and func-
tional integrity of the vessel wall and that it plays an
important role in cardiovascular diseases associated
with vascular smooth muscle cell contraction and
growth such as hypertension and restenosis. In addition,
Ang II induces vascular wall adhesion molecule-1 ex-
pression and contributes to atherogenesis by activation
of VCAM-1 through proteasome dependent, NF-kB-like
transcriptional mechanisms (Kranzhofer et al., 1999;
Tummala et al., 1999). In clinical trials with angioten-
sin-converting enzyme inhibitors and AT1 receptor
blockers demonstrating improved morbidity and mortal-
ity in hypertension, congestive cardiac failure, and myo-
cardial infarction, support the significance of Ang II in

the pathogenesis of cardiovascular disease. We focus
here on hypertension and the signal transduction mech-
anisms whereby Ang II influences vascular smooth mus-
cle cell responses underlying vascular functional and
structural alterations associated with blood pressure el-
evation. Ang II also plays an important pathophysiolog-
ical role in cardiac and renal disease, but will not be
discussed here. The reader is referred to a recent review
on this topic (Kim and Iwao, 2000).

B. Vascular Changes

The primary hemodynamic characteristic of essential
hypertension is increased peripheral vascular resistance
that is associated with structural, mechanical, and func-
tional alterations in the peripheral vasculature (Korner
et al., 1989; Folkow, 1990). The major structural
changes include reduced vessel lumen diameter and me-
dia thickening (vascular remodeling) (Mulvany and
Aalkjaer, 1990; Schiffrin, 1992; Mulvany et al., 1996;
Laurant et al., 1997; Rizzoni, 1998a; Sharifi and Schif-
frin, 1998; Williams, 1998; Intengan et al., 1999). At the
cellular level, there is hyperplasia, hypertrophy, elonga-
tion of vascular smooth muscle cells, reorganization of
the cells around the lumen of the artery, and/or altered
extracellular matrix composition, resulting in a smaller
lumen and outer diameter (Mulvany et al., 1985; Lee,
1987; Korsgaard et al., 1993; Owens and Schwartz,
1993; Nag, 1996; Gibbons, 1998; Sharifi et al., 1998;
Tsoporis et al., 1998; Intengan et al., 1999). Some stud-

FIG. 13. Diagram demonstrating common signaling pathways in vascular smooth muscle cells that are differentially regulated by Ang II and ET-1.
Although both vasoactive agents signal through Gq-coupled receptors, the cellular responses differ. Ang II increases [Ca21]i primarily via IP3-mediated
effects, whereas Ca21 influx is more important in ET-1-stimulated cells. ERK is potently and rapidly phosphorylated by Ang II, whereas responses
to ET-1 are less pronounced and delayed. These differences could contribute, in part, to the diverse functional responses. Rec, receptor; VSMC, vascular
smooth muscle cell; 1, increased response; dashed lines indicate main pathway.
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ies failed to demonstrate hyperplasia or hypertrophy of
vascular smooth muscle cells in small arteries from hy-
pertensive patients and spontaneously hypertensive
rats (SHR), a popular rat model of human essential
hypertension. Vascular remodeling accordingly was at-
tributed to changes in extracellular matrix content and
to rearrangement of vascular smooth muscle cells (Kors-
gaard et al., 1993; Nag, 1996; Intengan et al., 1999). In
intramyocardial arteries in SHR, the volume and num-
ber of arterial smooth muscle cells is significantly in-
creased (Amann et al., 1995) and in Ang II-induced
hypertensive rats, arterial smooth muscle cell thickness
is increased without a change in the number of cell
layers (Simon et al., 1998). In prehypertensive SHR,
structural changes of the small muscular arteries are
associated with an increase in the media volume, in-
creased number of smooth muscle cell layers, and elon-
gation of vascular smooth muscle cells (Dickhout and
Lee, 1997; Lee and Dickhout, 1998). Mesenteric resis-
tance arteries from SHR have a significantly increased
number of cell layers, which is normalized when rats are
treated for 8 weeks with ACE inhibitors or AT1 receptor
blockers (Rizzoni et al., 1998b). Other studies showed
that increased media thickness results from greater col-
lagen deposition rather than increased smooth muscle
cell number (Sharifi et al., 1998). These conflicting data
indicate that cellular processes underlying media thick-
ening are complex, and exact mechanisms contributing
to arterial remodeling in hypertension are not yet well
understood.

Functional changes accompany structural changes in
small arteries in hypertension, which contribute to en-
hanced vasoconstrictor responses and to elevation of
vascular tone. Functional alterations that increase pe-
ripheral resistance include enhanced vascular reactivity
to vasoconstrictor agents or impaired relaxation and
reflect changes in excitation-contraction coupling and/or
electrical properties of cells (Dominiczak and Bohr,
1989; Schiffrin, 1992; Schiffrin et al., 1993; Touyz et al.,
1994, 1999d; Chen et al., 1995b; Schiffrin et al., 1996;
Feldman and Gros, 1998). Excess systemic or local pro-
duction of vasoconstrictor agents or growth factors, abnor-
mal agonist-receptor interactions, increased cell mem-
brane permeability, defective transplasmalemmal ion
transport, and altered transduction of intracellular signal-
ing pathways in vascular smooth muscle cells may contrib-
ute to the pathological vascular changes that characterize
hypertension (Touyz and Schiffrin, 1993b,c).

Among the many vasoactive agonists implicated in
vascular hyperresponsiveness in hypertension, Ang II
appears to be one of the most important. Whereas re-
sponses to ET-1, vasopressin, and norepinephrine have
been reported to be decreased, unchanged, or rarely,
increased, vascular reactivity to Ang II has, for the most
part, been found to be enhanced in experimental and
human hypertension (Bodin et al., 1993; Schiffrin et al.,
1993; Touyz et al., 1994, 1999d; van Geel et al., 2000).

The significance of Ang II in the pathogenesis of hyper-
tension is supported by experimental and clinical stud-
ies demonstrating that ACE inhibitors and AT1 receptor
blockers not only lower blood pressure, but also regress
arterial and cardiac remodeling and normalize mecha-
nisms that regulate intracellular second messengers
(Touyz and Schiffrin, 1993a; Schiffrin et al., 1994, 2000;
Schiffrin, 1996; Schiffrin and Deng, 1995; Li et al., 1997;
Ennis et al., 1998; Li et al., 1998a; Rizzoni et al., 1998a;
Sharifi et al., 1998; Benetos et al., 2000; Zhan et al.,
2000). Many alterations in signal transduction have
been described in cardiovascular cells in hypertension
(Touyz and Schiffrin, 1993b,c; Witte and Lemmer, 1996).
The present review concentrates specifically on changes
in Ang II-mediated intracellular signaling in vascular
smooth muscle cells in hypertension. Other agents, and
particularly vasoactive peptides such as ET-1, may also
be important in vascular pathological processes and
complications of hypertension (Schiffrin et al., 1997;
Schiffrin, 1998) but will not be discussed here and the
reader is referred to recent reviews (Schiffrin et al.,
1997; Schiffrin and Touyz, 1998; Barton and Luscher,
1999).

C. Vascular Angiotensin Receptors

Altered Ang II-mediated signal transduction in hyper-
tension may occur at, or beyond, the level of the cell
membrane receptor. Recent studies demonstrated en-
hanced mRNA expression for AT1 and AT2 receptors in
aortic vessels from adult SHR compared with age-
matched normotensive Wistar-Kyoto rats (WKY rats)
(Otsuka et al., 1998a). We recently reported that AT2
receptor mRNA and protein expression are augmented
in mesenteric arteries from young SHR compared to
age-matched controls (Touyz et al., 1999a). Differential
regulation of AT2 receptors has also been demonstrated
in cultured aortic smooth muscle cells from SHR and in
kidneys from Ang II-induced hypertensive rats (Ishiki et
al., 1996; Wang et al., 1999). Binding studies demon-
strate that AT1 receptor density is greater in the adrenal
cortex, outer medulla of the kidney, and heart from SHR
compared with WKY rats (Song et al., 1995; Touyz et al.,
1996). However in the vasculature, Ang receptor density
and affinity do not seem to be significantly different
between adult SHR and WKY rats (Schiffrin et al., 1984;
Cortes et al., 1996), suggesting that up-regulation of Ang
II-mediated vascular signaling events in SHR probably
occur primarily at the post-receptor level. It has also
been suggested that hyperresponsiveness to Ang II in
hypertension could be due to altered desensitization of
AT1 receptors. mRNA and protein expression of GRK5, a
member of the G protein-coupled receptor kinase family
that phosphorylates and participates in the desensitiza-
tion of Ang receptors, is significantly increased in aorta
of Ang II-induced hypertensive rats compared with nor-
motensive controls (Ishizaka et al., 1997; Feldman and
Gros, 1998).

660 VASCULAR SMOOTH MUSCLE CELLS AND ANGIOTENSIN II SIGNALING

 by guest on June 15, 2012
pharm

rev.aspetjournals.org
D

ow
nloaded from

 

http://pharmrev.aspetjournals.org/


D. Short-Term Signaling Events

1. Angiotensin II Stimulation of the Phospholipase
C-IP3-Diacylglycerol Pathway Is Augmented. In vascu-
lar smooth muscle cells from young and adult SHR, Ang
II-stimulated PLC-mediated signaling is increased (Fig.
14). These events may be fundamental in the patholog-
ical vascular changes and target organ sequelae that
characterize hypertension. PLC activity, IP3 generation,
and DAG production as well as the second messengers
[Ca21]i and pHi are significantly augmented in response
to Ang II in cells from SHR compared with WKY rats
(Bendhack et al., 1992; Kato et al., 1992; Osanai and
Dunn, 1992; Redon and Batlle, 1994; Touyz et al., 1994,
1999d; Baines et al., 1996). Intracellular Ca21 overload
and alkalinization are partially due to increased Ca21

influx and mobilization and to enhanced activity to the
Na1/H1 exchanger (Roufogalis et al., 1997; Touyz and
Schiffrin, 1997b; Ennis et al., 1998). Altered Ang II-
induced [Ca21]i handling in hypertension may also be
due to increased TGF-b-stimulated Ang II-induced
transplasmalemmal Ca21 influx (Zhu et al., 1995a).
ACE inhibition and AT1 receptor blockers, but not AT2

receptor antagonists, normalize Ca21 and pHi regula-
tory mechanisms in experimental and human hyperten-
sion, suggesting that AT1-mediated processes play a role
in modified Ang II-stimulated second messenger re-
sponses (Touyz and Schiffrin, 1993b; Ennis et al., 1998).
Activity of vascular smooth muscle cells from SHR
shows a greater dependence on Ang II-mediated Ca21

mobilization than cells from WKY rats (Lucchesi, 1996).
This Ca21-dependent MAP kinase activation in SHR
vascular smooth muscle has been defined as a hyperten-
sive signal transduction phenotype (Lucchesi, 1996).
[Ca21]i elevation and alkalinization are major determi-
nants of vascular contraction and growth and could be
critical in Ang II-induced vascular hyperreactivity and
dysfunction in hypertension (Grinstein et al., 1989;
Rembold, 1993).

2. Angiotensin II-Stimulated Effects on Vascular
[Mg21]i and [Na1]i. Magnesium, the second most
abundant intracellular cation is an important modulator
of vascular [Ca21]i (Fig. 14). Total and free concentra-
tions of intracellular Mg21 are significantly reduced in
various cell types in experimental and human hyperten-
sion (Touyz et al., 1992; Touyz and Schiffrin, 1993a,
1998; Resnick et al., 1997). Mechanisms that regulate
[Mg21]i in hypertension are unknown, but we recently
reported that the magnitude of Ang II-induced reduction
in [Mg21]i is increased in vascular smooth muscle cells
from SHR (Touyz and Schiffrin, 1999a). This augmenta-
tion was associated with alterations in Na1-dependent
Mg21 exchange, which was linked to increased activa-
tion of the Na1/H1 exchanger and increased [Na1]i
(Touyz and Schiffrin, 1999a). Because of the Ca21-an-
tagonistic properties of Mg21, reduced [Mg21]i, both
basal and in response to agonists, may contribute to
increased [Ca21]i and enhanced contractile responsive-
ness to Ang II in hypertension (Zhu et al., 1995b; Yo-
shimura et al., 1997).

Ang II increases [Na1]i in a concentration-dependent
manner that is augmented in hypertension (Touyz and
Schiffrin, 1996, 1999a). This is associated with increased
Na1/Ca21 exchange, increased Na1 influx, increased
activation of the Na1/H1 exchanger, alterations in ac-
tivity of the Na1/K1 ATPase pump, and the presence of
a Na1 pump inhibitor (Shigekawa et al., 1996; Ju-
haszova and Blaustein, 1997; Cox et al., 1998). In addi-
tion, altered regulation of the Na1/Mg21 exchanger con-
tributes to enhanced Ang II-stimulated [Na1]i responses
(Touyz and Schiffrin, 1999a). Elevated [Na1]i influences
vascular smooth muscle growth and contraction (Hen-
rion et al., 1997; Gu et al., 1998). In SHR increased
[Na1]i responses have been shown to convert hypertro-
phy to hyperplasia synergistically with activated PKC
via MAP kinase-dependent signaling pathways (Osanai
et al., 1996). These responses could contribute to
changes in vascular smooth muscle cell phenotype that
lead to vascular remodeling in hypertension.

FIG. 14. Alterations in some of the short-term Ang II-stimulated sig-
naling events in hypertension. In hypertension, PLC activity, IP3 gener-
ation, and DAG production are increased in response to Ang II stimula-
tion. Increased IP3 results in augmented mobilization of intracellular
Ca21 with resultant increased [Ca21]i. Increased Ang II-stimulated Ca21

influx also contributes to elevated [Ca21]i in hypertension. Generation of
DAG, due to increased activation of PLC and PLD, leads to increased
protein kinase C activity, which activates the Na1/H1 exchanger result-
ing in intracellular alkalinization. Activation of the Na1-dependent Mg21

exchanger induces Mg21 efflux resulting in decreased intracellular free
Mg21 concentration ([Mg21]i) contributing to increased [Ca21]i. These
processes lead to enhanced contraction. Increased activation of ERK-
dependent signaling pathways contributes to the sustained phase of
contraction. 1, increase; 2, decrease; dashed line, indirect effect.
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3. Vascular Eicosanoids, Angiotensin II, and Hyper-
tension. The role of eicosanoids in Ang II-dependent
hypertension has recently been reviewed (Nasjletti,
1997). Eicosanoids have the potential to act as either
prohypertensive or antihypertensive agents. Ang II-in-
duced hypertension in rats is accompanied by increased
vascular production of TXA2 and of lipoxygenase-de-
rived metabolites that have the ability to inhibit prosta-
cyclin synthase (Nasjletti, 1997). As a result of these
alterations, the activity of pressor mechanisms medi-
ated by TXA2 and/or PGH2 is augmented. Thromboxane
synthase inhibitors, TXA2/PGH2 receptor blockers and
inhibitors of lipoxygenase lower blood pressure in Ang
II-treated rats, supporting the role of eicosanoids in this
model of hypertension (Nasjletti, 1997). Eicosanoids also
influence blood pressure elevation in genetically hyper-
tensive rats (Kunimoto et al., 1998). Enhanced Ang II-
stimulated vascular reactivity in de-endothelialized
small mesenteric arteries is associated with alterations
in metabolism of cyclooxygenase products in SHR
(Cortes et al., 1996). Treatment with inhibitors of throm-
boxane synthase and of lipoxygenase significantly re-
duced blood pressure in SHR (Stern et al., 1993; Keen et
al., 1997).

4. Angiotensin II Increases Activity of Phospholipase
D. Some of the altered prolonged signaling events me-
diated by Ang II in hypertension have been attributed to
increased activation of PLD (Fig. 12). The magnitude of
increase in PLD activity and the rate of activation in
response to Ang II, as well as the heptapeptide Ang-(2-
8), is greater in aortic vascular smooth muscle cells from
SHR compared with cells from WKY rats (Freeman,
1995). This effect appears to be [Ca21]i-dependent. In-
creased Ang II-stimulated activation of PLD contributes
to enhanced vasoconstriction via DAG-PKC-dependent
pathways, and to increased cell growth via phosphatidic
acid (Dhalla, 1997; Gomez-Cambronero and Kiere,
1998). PLD and its metabolites also activate NADH/
NADPH to generate superoxide anions; which are im-
portant modulators of cell growth and vascular remod-
eling in hypertension (Gomez-Cambronero and Kiere,
1998; Touyz and Schiffrin, 1999b).

5. Cyclic Nucleotides and Angiotensin II. Augmented
Ang II-induced vasoconstriction in hypertension is re-
lated, in part, to changes in cyclic nucleotide signaling.
In cultured preglomerular microvascular smooth muscle
cells, Ang II enhances cAMP responses to b-adrenocep-
tor agonists via a PKC-dependent mechanism, resulting
in vasodilation and attenuation of Ang II-stimulated
contraction (Mokkapatti et al., 1998). In hypertension,
this buffering mechanism is altered leading to blunted
vasodilation and increased vascular contractility. Simi-
lar findings have been reported in the renal vasculature
of SHR in the early phases of blood pressure elevation.
In renal resistance arteries of 8-week-old SHR, exagger-
ated vascular reactivity to Ang II was found to be due to
defective cAMP generation in the presence of a normally

operating PKC pathway (Ruan and Arendshorst,
1996b). Changes in cGMP regulation have also been
demonstrated to play a role in enhanced responsiveness
to Ang II in SHR. Basal and stimulated cGMP responses
are significantly lower in vascular smooth muscle cells
from SHR compared with WKY rats (Baines et al.,
1996). In balloon-injured rat aorta, AT2 receptor stimu-
lation results in reduced basal cGMP levels (Moroi et al.,
1997). Modified cross-talk between constrictor and dila-
tor signaling pathways may contribute to Ang II-medi-
ated vascular hyperresponsiveness in some vascular
beds in hypertension.

E. Long-Term Signaling Events

1. Angiotensin II-Induced Generation of Reactive Ox-
ygen Species. There is increasing evidence that vascu-
lar oxidative stress plays a pathogenic role in hyperten-
sion (Touyz, 2000) (Fig. 15). Ang II increases production
of reactive oxygen species in vascular smooth muscle,

FIG. 15. Alterations in some of the long-term Ang II-stimulated sig-
naling events in hypertension. Increased activation of tyrosine kinase-
and MAP kinase-dependent signaling pathways lead to increased nuclear
signaling events resulting in enhanced protein synthesis. In the vascu-
lature in hypertension, increased protein synthesis is associated with
enhanced cell growth, mitogenesis, greater extracellular matrix (ECM)
deposition, and increased growth factor production leading to increased
media thickness and vascular remodeling. Augmented Ang II-stimulated
generation of superoxide anion (zO2

.) and hydrogen peroxide (H2O2), po-
tent mitogens, may also contribute to increased mitogenesis in hyperten-
sion. JAK, Janus kinase.
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endothelial, adventitial, and mesangial cells (Harrison,
1997; Pagano et al., 1997; Jaimes et al., 1998; Touyz and
Schiffrin, 1999b). In Ang II-dependent models of hyper-
tension, vascular production of superoxide anions is in-
creased (Laursen et al., 1997; Aizawa et al., 2000; Zalba
et al., 2000). This effect is mediated via Ang II-stimu-
lated activation of vascular NADH/NADPH oxidase (Ra-
jagopalan et al., 1996). In Ang II-induced hypertensive
rats, treatment with liposome-encapsulated superoxide
dismutase reduced production of vascular reactive oxy-
gen species, decreased blood pressure by ;50 mm Hg,
and enhanced responses to vasodilators, both in vivo and
in vitro (Laursen, 1997). NADH/NADPH oxidase-gener-
ated reactive oxygen species also contribute to Ang II-
mediated vascular hypertrophy in hypertension. Both
O. and H2O2 are potent mitogens that elicit effects via
p38 MAP kinase, ERK-5 and NF-kB (Abe and Berk,
1998; Ushio-Fukai et al., 1998a). Inhibition of NADH/
NADPH oxidase inhibits Ang II-induced vascular
smooth muscle cell hypertrophy (Ushio-Fukai et al.,
1996; Touyz and Schiffrin, 1999b), supporting a poten-
tial role of reactive oxygen species as inducers of in-
creased vascular growth in hypertension.

2. Angiotensin II, Tyrosine Kinases, and Hyperten-
sion. In cardiac, renal, and vascular tissue from hyper-
tensive rats, basal and Ang II-stimulated activation of
tyrosine kinases and ERKs is increased (Wilkie et al.,
1997; Hamaguchi et al., 1998; Izumi et al., 1998; Touyz
et al., 1999d) (Fig. 15). Of the tyrosine kinases stimu-
lated by Ang II, JAK/STAT has been most extensively
studied in hypertension. In acute pressure overload in
the rat, cardiac JAK/STAT is activated (Pan et al., 1997).
In this model, where pressure overload was produced by
abdominal aortic constriction in Wistar rats, Ang II ac-
tivated both Tyk2 and JAK2 (Pan et al., 1997). These
effects were completely blocked by ACE inhibitors and
AT1 receptor antagonists (Pan et al., 1997). Activation of
the JAK/STAT pathway is associated with Ang II-in-
duced vascular and cardiac remodeling in hypertension
as well as with inflammatory processes that underlie
atherosclerosis (Dostal et al., 1997; Ghatpande et al.,
1999). These actions are mediated by increased phos-
phorylation of STATs. In Ang II-induced hypertension,
activated STATs bind to the SIE of the gene promoter
leading to enhanced expression of vascular smooth mus-
cle cell growth-related early response genes, such as
c-fos, c-myc, and a2-macroglobulin (Pollack, 1995; Chen
et al., 1996; Xu et al., 1996a; Dostal et al., 1997). In vivo
studies demonstrate that renal c-fos mRNA expression
in response to AT1 stimulation is augmented in SHR
compared with WKY rats (Otsuka et al., 1998a,b). Al-
though many tyrosine kinases, such as Src family ki-
nases, Fak, receptor tyrosine kinases, PI3K, and Pyk2
are phosphorylated by Ang II, the role of these kinases
in the pathogenesis of vascular damage and cardiovas-
cular diseases has not yet been elucidated.

3. Angiotensin II-Mediated Mitogen-Activated Protein
Kinase Signaling Is Increased. Of the growth-signaling
pathways activated by Ang II, MAP kinase-dependent
cascades have been most extensively studied in hyper-
tension (Fig. 15). Ang II-stimulated activation of ERK-
1/ERK-2 is augmented in vascular smooth muscle cells
from aorta and mesenteric arteries of SHR (Wilkie et al.,
1997; Touyz et al., 1999c,d). In aortic vessels and cardiac
tissue from SHRSP and in Ang II-induced hypertension,
activities of both JNK/SAPK and ERKs are increased
compared with normotensive controls (Kim et al., 1997;
Izumi et al., 1998). These effects appear to be specific, as
there is no significant increase in ERK or JNK/SAPK
activity in noncardiovascular tissue, such as liver, stom-
ach, spleen, or lung of hypertensive rats (Kim et al.,
1997; Kim and Iwao, 2000). Alterations in MAP kinase
function in hypertension include a more rapid inactiva-
tion of MAP kinase after Ang II stimulation and a
greater dependence of MAP kinase phosphorylation on
intracellular Ca21 mobilization (Lucchesi et al., 1996).
Mechansims underlying these enhanced Ang II-induced
MAP kinase responses in hypertension are related to
amplification at the level of sequential PKC and tyrosine
kinase steps (Wilkie et al., 1997; Hamaguchi et al.,
1998). In cardiac hypertrophy associated with Ang II-
induced hypertension, both cardiac ERK and JNK/
SAPK activities are increased, but JNK/SAPK activa-
tion occurs in a more sensitive manner than ERK
activation (Yano et al., 1998). The differential regulation
suggests that JNK/SAPK may be critical in Ang II-
induced cardiac hypertrophy (Yano et al., 1998),
whereas in vascular hypertrophy, ERK-1/ERK-2-depen-
dent signaling pathways may be more important
(Dubey, 1997). This is further supported by studies of
balloon-injured vessels, in which activity of ERK-1/
ERK-2 was greater than that of JNK/SAPK (Kim et al.,
1998). In vivo studies in SHRSP demonstrate that ACE
inhibitors and AT1 receptor blockers significantly re-
duces ERK activity, implicating a role for AT1 receptors
in enhanced ERK activation in hypertension (Hamagu-
chi et al., 1999; Kim and Iwao, 2000).

Increased activity of MAP kinases contributes not
only to augmented growth responses, but also to in-
creased vascular contractility in hypertension. We re-
ported that Ang II-induced contractile and associated
[Ca21]i signaling responses are significantly enhanced
in vascular smooth muscle cells from resistance arteries
of SHR, and that these phenomena are dependent on
hyperactivation of ERK-1/ERK-2 (Touyz et al., 1999d).
The second phase of contraction, which was sustained
and of greater magnitude in vessels from SHR than
WKY rats, was particularly sensitive to MAP kinase
phosphorylation (Touyz et al., 1999d). Similar findings
have been demonstrated in intact arteries (Epstein et
al., 1997).

Altered regulation of vascular MAP kinase activity in
hypertension is related to modifications in the balance
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between MKP-1 (as well as related phosphatases) and
MAP kinase levels/activity. Normally, activity of MAP
kinases is regulated by reversible phosphorylation of
tyrosine and threonine residues by protein phospha-
tases (Hunter, 1995). Ang II induces MKP-1 expression
in the vasculature, which is secondary to induction of
MAP kinase (Xu et al., 1997). In vascular smooth muscle
cells from SHR, increased MAP kinase activity appears
to be due to increased tyrosine phosphorylation because
of reduced dephosphorylation resulting from impaired
growth factor-mediated MKP-1 gene expression that at-
tenuates MAP kinase signaling via feedback inhibition
(Begum et al., 1998). Thus dysregulation of the balance
between MAP kinase and MKP-1 levels/activity could
contribute to increased vascular smooth muscle cell
growth in hypertension.

4. Indirect Effects of Angiotensin II on the Vasculature.
Some Ang II actions on vascular signaling in hyperten-
sion are mediated via indirect mechanisms through
other vasoactive agents such as ET-1, growth factors
such as TGF-b1 and PDGF-A, or cytokines such as TNF
(Fig. 15). Enhanced Ang II-elicited contractile respon-
siveness in aorta from SHR is mediated by an ET-1
component that is especially important at suppressor
Ang II concentrations (Balakrishnan et al., 1996). Ang
II-stimulated ET-1 production also regulates vascular
structural changes in hypertension. In rats infused with
Ang II, ET-1 expression in vascular smooth muscle cells
is increased (Moreau et al., 1997) and arterial remodel-
ing in Ang II-induced hypertensive rats is completely
reversed when rats are treated with an ET receptor
blocker (Barton et al., 1998). However the role of endog-
enous Ang II on ET-1 production is still unclear, since
ET receptor blockade has little blood pressure-lowering
effect in Ang II-dependent models of hypertension (Li
and Schiffrin, 1995). Also in renin-independent hyper-
tension vascular ET-1 gene expression is enhanced
(Schiffrin et al., 1996; Sventek et al., 1996). Furthermore
in ren 2 transgenic rats, the ET receptor blocker, SB
2099670, had no significant effect on blood pressure
(Gardiner et al., 1995). Hence the exact contribution of
ET-1 to mediation of Ang II effects in vivo is unclear.

Exaggerated growth of vascular smooth muscle cells
and vascular remodeling in SHR has also been attrib-
uted, in part, to abnormal regulation of growth factors
and their receptors by Ang II. Expression of TGF-b1 and
PDGF-A mRNAs and TGF-b receptor is greater in vas-
cular smooth muscle cells from SHR than in cells from
WKY rats (Hahn et al., 1991; Hamet et al., 1991;
Fukuda et al., 1995; Parker et al., 1998). Abnormal
regulation of TGF-b receptors in hypertension appears
to be related to locally generated Ang II (Fukuda et al.,
1998). Ang II-induced effects are also mediated via cy-
tokines and other tyrosine kinase receptor-linked ago-
nists. In Ang II-dependent hypertension, renal levels of
the cytokine TNF and the constrictor prostaglandin
PGE2 are higher than those of normotensive controls.

Anti-TNF antiserum exacerbates Ang II-mediated in-
crease in blood pressure (Ferreri, 1997). These data sug-
gest that TNF and PGE2 modulate pressor actions of
Ang II in hypertension, and that signaling pathways
typically associated with inflammation are also involved
in Ang II-associated vascular dysfunction and structural
remodeling in hypertension.

F. Mechanisms Underlying Enhanced Angiotensin II
Vascular Responsiveness

The significance of Ang II-dependent effects in the
cardiovascular system in hypertension is evidenced by
clinical studies demonstrating that pharmacological in-
terruption of the RAS not only normalizes enhanced Ang
II-induced signaling responses but improves endothelial
function, regresses cardiac and vascular structural
changes, and reduces blood pressure (Rizzoni et al.,
1998a; Schiffrin et al., 2000). Blockade of other systems
linked to G protein-coupled receptors, such as ET-1, fails
to effectively improve vascular remodeling and only
modestly reduces blood pressure in genetically hyper-
tensive rats and in patients with essential hypertension
(Barton and Luscher, 1999). These data suggest that
Ang plays an important and specific role in the patho-
genesis of hypertension and that altered regulation of
Ang II at the cellular and molecular level could be fun-
damental in the pathological processes associated with
the development and maintenance of blood pressure el-
evation. Both in vitro studies in cultured cells and data
from whole animal experiments indicate that Ang II
signaling in hypertension is up-regulated. Exact reasons
for this are unclear, but it appears that augmented Ang
II signaling is a post-receptor phenomenon. This is
based on studies demonstrating that Ang II receptor
status, determined by binding studies, mRNA and pro-
tein expression, is not significantly altered in vascular
smooth muscle cells in hypertension (Cortes et al., 1996;
Schiffrin, 1996).

Since multiple Ang II-mediated signaling pathways
and downstream effectors are up-regulated in hyperten-
sion, it seems likely that the primary abnormality occurs
very early in the signaling process. This may be at the
level of AT1 receptor-G protein interraction, or at the
level of a common upstream signaling molecule. Possible
post-receptor mechanisms underlying these events in-
clude increased phosphorylation of the AT1 receptor,
altered receptor-G protein coupling, impaired receptor-
mediated activation of upstream signaling molecules
and dysregulation of second messengers. Defective AT1
receptor internalization and termination of the signal-
ing event could also contribute to sustained and aug-
mented responses. Although our current knowledge of
the precise mechanisms responsible for Ang II hyperre-
sponsiveness is limited, it is apparent that genetic fac-
tors play a role. This is based on studies demonstrating
that Ang II-induced signaling events remain up-regu-
lated in serially passaged cultured cells and in immor-
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talized lymphocytes from hypertensive rats and hu-
mans. The need to identify primary causes responsible
for altered Ang II signaling in hypertension is clinically
relevant, as targeting specific abnormally regulated
molecules in the signaling cascade has therapeutic po-
tential. With the availability today of highly selective
pharmacological inhibitors, molecular tools, and geneti-
cally manipulated animal models, hopefully it won’t be
too long before we are able to elucidate in greater detail
the fundamental origin responsible for abnormal Ang II
signaling in hypertension.

IV. Conclusions

Ang II influences arterial tone and remodeling in hy-
pertension by stimulating vascular smooth muscle cell
contraction, augmenting cell growth, increasing deposi-
tion of extracellular matrix, inhibiting apoptosis, induc-
ing cell migration, and promoting inflammation. Recent
data showing that ACE inhibitors or AT1 receptor an-
tagonist treatment of essential hypertensive patients
regresses structural and functional abnormalities of the
vascular wall (Schiffrin, 1996, 1998; Schiffrin et al.,
2000) suggest that Ang II plays a critical role in abnor-
mal behavior of vascular cells in hypertension. Mecha-
nisms underlying these cellular effects seem to occur at
the post-receptor level and appear to be associated with
hyperactivity of Ang II-stimulated G protein-coupled
phospholipases, tyrosine kinase-, and MAP kinase-de-
pendent pathways, as well as with oxidative stress. In-
teractions between these cascades is highly complex,
and dysregulation at any level could manifest as patho-
logical functional sequelae and structural vascular
changes in hypertension. The impact and significance of
altered Ang II-induced intracellular signaling in the vas-
culature in hypertension is becoming more evident.
However, although there has been significant progress
in the last few years in the elucidation of aberrations in
Ang II-induced signal transduction in hypertension, we
still know very little about the processes that underlie
these phenomena and at what point some pathways
become more important than others. With molecular
and pharmacological tools that allow manipulation of
specific signal transduction molecules, identification of
distinct abnormalities in intracellular signaling in hy-
pertension should be possible. This will further our un-
derstanding of the role of Ang II in the vascular patho-
physiological processes that are associated with
hypertension and other cardiovascular diseases.
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